Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1541–1546 | Cite as

Multilayer Light-Emitting Diodes Based on Organic Semiconductor Polymers

  • R. M. Gadirov
  • A. V. Odod
  • A. E. Kurtsevich
  • D. M. Ilgach
  • A. V. Yakimansky
  • T. N. Kopylova
OPTICS AND SPECTROSCOPY
  • 5 Downloads

Results of studying the optical and electrical characteristics of single- and two-layer polymer OLED structures with different thicknesses of radiating layers are presented. It is shown that the efficiency of the OLED structures with thick layers reaches 6.9 cd/A, while similar thin-layer structures have the efficiency 10 times smaller. An increase in the thickness of the radiating layer of the polymer as well as incorporation of additional electron transport layer leads to a decrease in the leakage current and an increase in the efficiency; however, it changes the electroluminescence spectrum of the device.

Keywords

electroluminescence polyfluorene copolymer organic light-emitting diode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Shimoda, K. Morii, et al., MRS Bulletin, 28, No. 11, 821–827 (2003).CrossRefGoogle Scholar
  2. 2.
    X. Liu, S. Klinkhammer, et al., Appl. Phys. Express, 5, No. 7, 072101 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    A. Teichler, Z. Shu, et al., Eur. Polym. J., 49, No. 8, 2186–2195 (2013).CrossRefGoogle Scholar
  4. 4.
    H. Zheng, Y. Zheng, et al., Nat. Commun., 4, 1971 (2013).CrossRefGoogle Scholar
  5. 5.
    Q. Niu, Y. Shao, et al., Org. Electron., 9, No. 1, 95–100 (2008).CrossRefGoogle Scholar
  6. 6.
    B. Zhang, C. Qin, et al., Adv. Funct. Mater., 20, No. 17, 2951–2957 (2010).CrossRefGoogle Scholar
  7. 7.
    U. Scherf and E. J. W. List, Adv. Mater., 14, No. 7, 477–487 (2002).CrossRefGoogle Scholar
  8. 8.
    F. Huang, H. Wu, and Y. Cao, Chem. Soc. Rev., 39, No. 7, 2500–2521 (2010).CrossRefGoogle Scholar
  9. 9.
    C. Zhong, S. Liu, et al., Chem. Mater., 23, No. 21, 4870–4876 (2011).CrossRefGoogle Scholar
  10. 10.
    G. I. Nosova, D. M. Ilgach, et al., Mendeleev Commun., 27, No. 3, 265–267 (2017).CrossRefGoogle Scholar
  11. 11.
    N. P. Yevlampieva, A. P. Khurchak, et al., Chem. Phys. Lett., 645, 100–105 (2016).Google Scholar
  12. 12.
    T. N. Kopylova, E. N. Nikonova, S. Yu. Nikonov, et al., Russ. Phys. J., 58, No. 12, 1792–1796 (2015).CrossRefGoogle Scholar
  13. 13.
    G. Zhou, G. Qian, et al., Macromolecules, 38, No. 13, 5416–5424 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    A. V. Odod, R. M. Gadirov, T. A. Solodova, et al., Russ. Phys. J., 60, No. 12, 2236–2240 (2017).CrossRefGoogle Scholar
  15. 15.
    L. Ying, C. L. Ho, et al., Adv. Mater., 26, No. 16, 2459–2473 (2014).CrossRefGoogle Scholar
  16. 16.
    D. M. Il’gach, G. I. Nosova, et al., Vestn. Tverskogo Gosud. Univ. Ser. Khim., No. 1, 72–79 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. M. Gadirov
    • 1
  • A. V. Odod
    • 1
  • A. E. Kurtsevich
    • 1
  • D. M. Ilgach
    • 1
    • 2
  • A. V. Yakimansky
    • 2
  • T. N. Kopylova
    • 1
  1. 1.V. D. Kuznetsov Siberian Physical-Technical Institute at National Research Tomsk State UniversityTomskRussia
  2. 2.Institute of Macromolecular Compounds of the Russian Academy of SciencesSaint PetersburgRussia

Personalised recommendations