Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1520–1528 | Cite as

Elastoplastic Deformation of Dispersion-Hardened Aluminum Tube Under External Pressure

  • O. V. Matvienko
  • O. I. Daneyko
  • T. A. Kovalevskaya
Article
  • 5 Downloads

The paper presents research into elastoplastic deformation of a heavy-walled tube made of a dispersion-hardened aluminum alloy, subjected to the external pressure. Mathematical simulation shows that with the decreasing distance between incoherent particles the alloy hardening occurs which leads to the growth in the elastic and plastic resistance limits. In alloys where the distance between strengthening particles is short, a significantly higher pressure is required to achieve the given thickness of the plastic area, than in alloys where this distance is larger. With the increasing temperature of deformation, the thickness of the plastic area increases at the same pressure. In this case, the elastic-plastic interface shifts toward the outer tube wall.

Keywords

dispersion-hardened material aluminum alloy nanoparticle plastic deformation mathematical model strain hardening 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Luts and I. A. Galochkina, Aluminum Composite Alloys as Alloys of the Future [in Russian]. Samara (2013), 82 p.Google Scholar
  2. 2.
    V. V. Berezovskii, A. A. Shavnev, S. B. Lomov, and Yu. A. Kurganova, Aviatsionnye materialy i tekhnologii, No. 6. 17–23 (2014).Google Scholar
  3. 3.
    N. A. Kulaeva, O. I. Daneyko, T. A. Kovalevskaya, and V. A. Starenchenko, Vest. Tambov. univers. Ser. Estestvennye i tekhnicheskie nauki, 21, No. 3, 1089–1092 (2016).Google Scholar
  4. 4.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 2, 236–248 (2017).CrossRefGoogle Scholar
  5. 5.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 4, 562–569 (2017).CrossRefGoogle Scholar
  6. 6.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 60, No. 7, 1233–1242 (2017).CrossRefGoogle Scholar
  7. 7.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 4, 730–742 (2018).CrossRefGoogle Scholar
  8. 8.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Russ. Phys. J., 61, No. 5, 962–973 (2018).CrossRefGoogle Scholar
  9. 9.
    O. V. Matvienko, O. I. Daneyko, and T. A. Kovalevskaya, Acta Metall. Sin. (Engl. Lett.), 31, No. 12, 1297–1304 (2018).CrossRefGoogle Scholar
  10. 10.
    O. I. Daneyko, T. A. Kovalevskaya, S. N. Kolupaeva, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 52, No. 9/2, 125–131 (2009).Google Scholar
  11. 11.
    O. I. Daneyko, T. A. Kovalevskaya, N. A. Kulaeva, S. N. Kolupaeva, T. A Shalygina, and V. A. Starenchenko, Russ. Phys. J., 57, No. 2, 159–169 (2014).CrossRefGoogle Scholar
  12. 12.
    O. I. Daneyko, T. A. Kovalevskaya, and O. V. Matvienko, Russ. Phys. J., 61, No. 7, 1229–1235 (2018).CrossRefGoogle Scholar
  13. 13.
    T. A. Kovalevskaya, I. V. Vinogradova, and L. E. Popov, Mathematical Simulation of Plastic Deformation of Heterophase Alloys [in Russian], TSU, Tomsk (1992), 168 p.Google Scholar
  14. 14.
    L. J. Polmear, Light Alloys: Metallurgy of Lights Metals, John Willey and Sons, Australia (1995), 235 p.Google Scholar
  15. 15.
    A. G. Gorshkov, E. I. Starovoitov, and D. V. Tarlakovskii, Theory of Elasticity and Plasticity [in Russian], Fizmatlit, Moscow (2002), 416 p.Google Scholar
  16. 16.
    N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1975), 400 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Matvienko
    • 1
    • 2
  • O. I. Daneyko
    • 1
  • T. A. Kovalevskaya
    • 1
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations