Russian Physics Journal

, Volume 61, Issue 8, pp 1513–1519 | Cite as

Aluminum Ion Beam Treatment of Zirconium Ceramics

  • S. A. Gyngazov
  • A. I. Ryabchikov
  • V. Kostenko
  • D. O. Sivin

The paper presents the radiation and thermal treatment of zirconium ceramics with high-energy Al ion beams generated at an accelerating voltage of 1.5 kV, which modifies the structure and electrophysical properties of zirconium ceramics. Compact powder and ceramic samples are used for the radiation and thermal treatment performed at 1123–1173 K. The surface treatment of compact powders leads to the increase in the grain size, whereas the surface of ceramic samples turns black and electrically conductive in depth. This is because the change in the oxygen stoichiometry of zirconium ceramics. Air annealing of treated ceramics returns the sample to the initial state. The phase composition, microhardness and density of ceramic samples display no changes after the radiation and thermal treatment. Under the experimental conditions, the diffusion of aluminum ions in the surface layer is not observed. It is found that the ion beam treatment leads to the decrease in aluminum-containing impurity in the surface layers of zirconium ceramics.


zirconium ceramics ion beam aluminum radiation and thermal treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Vlasov, S. Panin, V. P. Sergeev, et al., Adv. Mater. Res., 872, 219–224 (2014).CrossRefGoogle Scholar
  2. 2.
    A. I. Ryabchikov, D. O. Sivin, P. S. Anan'in, et al., Russ. Phys. J., 61, No. 2, 270–277 (2018).Google Scholar
  3. 3.
    A. S. Demin, E. V. Morozov, S. A. Maslyaev, et al., Fiz. Khim. Obrab. Mater., No. 6, 42–50 (2016).Google Scholar
  4. 4.
    I. Yu. Romanov, N. V. Gushchina, V. V. Ovchinnikov, et al., Russ. Phys. J., 60, No. 10, 1823–1831 (2018).CrossRefGoogle Scholar
  5. 5.
    S. A. Maslyaev, E. V. Morozov, P. A. Romakhin, et al., Fiz. Khim. Obrab. Mater., No. 3, 5–17 (2015).Google Scholar
  6. 6.
    I. G. Romanov and I. N. Tsareva, ZhTF, 27, No. 16, 65–70 (2001).Google Scholar
  7. 7.
    S. A. Gyngazov, I. P. Vasil'ev, A. P. Surzhikov, et al., ZhTF, 85, No. 1, 132–137 (2015).Google Scholar
  8. 8.
    K. P. Savkin, A. S. Bugaev, A. G. Nikolaev, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 57, No. 10/3, 244–248 (2014).Google Scholar
  9. 9.
    V. Kostenko, S. Pavlov, and S. Nikolaeva, IOP Conf. Ser.: Mater. Sci. Eng., 289, 012019 (2018).CrossRefGoogle Scholar
  10. 10.
    A. F. Burenkov, F. F. Komarov, M. A. Kumachov, and M. M. Temkin, The Spatial Distribution of the Energy Released in a Cascade of Atomic Collisions in Solids. Energoizdat, Moscow (1985).Google Scholar
  11. 11.
    J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods, 174, 257–269 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Ovchinnikov, N. V. Gushchina, I. Yu. Romanov, et al., Russ. Phys. J., 59, No. 10, 1521–1527 (2017).CrossRefGoogle Scholar
  13. 13.
    A. V. Markidonov, Fundamental'nye problemy radioelektronnogo priborostroeniya, 16, No. 4. 33–36 (2016).Google Scholar
  14. 14.
    I. N. Serov, V. I. Margolin, V. A. Zhabreev, et al., Inzhenernaya fizika, No. 1, 50–67 (2005).Google Scholar
  15. 15.
    S. E. Sabo, Informatsionno-tekhnologicheskii vestnik, No. 3, 119–133 (2016).Google Scholar
  16. 16.
    Yu. P. Sharkeev, N.V. Girsova, A.I. Ryabchikov, et al., Nucl. Inst. Methods Phys. Res. B, 106, Nos. (1–4), 532–537 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Ryabchikov, P. S. Anan’in, S. V. Dektyarev, et al., ZhTF, 43, No. 23, 3–10 (2017).Google Scholar
  18. 18.
    V. A. Gribkov, A. S. Demin, E. V. Demina, et al., Prikladnaya fizika, No. 3, 43–51 (2011).Google Scholar
  19. 19.
    E. A. Azizov, A. A. Airapetov, L. B. Begrambekov, et al., VANT. Ser. Termoyadernyi sintez, No. 37, 30–38 (2014).Google Scholar
  20. 20.
    V. V. Uglov, G. E. Remnev, A. K. Kuleshov, and M. S. Saltymakov, Fiz. Khim. Obrab. Mater., No. 1, 65–70 (2010).Google Scholar
  21. 21.
    B. Ganavati, V. A. Kukarenko, and A. G. Kononov, Russ. Phys. J., 58, No. 1, 63–69 (2015).CrossRefGoogle Scholar
  22. 22.
    V. V. Ovchinnikov, F. F. Makhin’ko, and V. I. Solomonov, J. Phys.: Conf. Ser., 652, 012070 (2015).Google Scholar
  23. 23.
    Haowen Zhong, Jie Zhang, Jie Shen, et al., Nucl. Instrum. Methods Phys. Res., 409, 298–301 (2017).ADSCrossRefGoogle Scholar
  24. 24.
    A. G. Konnov, V. A. Kukareko, A. V. Belyi, and Yu. P. Sharkeev, Mekhanika mashin, mekhanizmov i materialov, No. 22, 47–53 (2013).Google Scholar
  25. 25.
    V. K. Struts and G. E. Remnev, Izv. Vyssh. Uchebn. Zaved., 53, No. 10/2, 125–128 (2010).Google Scholar
  26. 26.
    A. I. Ryabchikov, P. S. Ananin, S. V. Dektyarev, et al., Vacuum, 143, 447– 453 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    V. P. Miroshkin, Ya. I. Panova, and V. V. Pasynkov, Phys. Solid State, 66, 779–782 (1981).CrossRefGoogle Scholar
  28. 28.
    V. G. Zavodinskii and A. N. Chibisov, Phys. Solid State, 48, No. 2, 363–368 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    A. P. Surzhikov, T. S. Frangul'yan, S. A. Gyngazov, and S. V. Grigor'ev, Izv. Vyssh. Uchebn. Zaved., Fiz., 54, No. 1/3, 237–241 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Gyngazov
    • 1
  • A. I. Ryabchikov
    • 1
  • V. Kostenko
    • 1
  • D. O. Sivin
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations