Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1506–1512 | Cite as

The Influence of Microstructure on Oxidation Rate Of V–Cr–Ta–Zr Alloy During Its Chemical-Heat Treatment

  • I. A. Ditenberg
  • I. V. Smirnov
  • A. S. Tsverova
  • A. N. Tyumentsev
  • K. V. Grinyaev
  • V. M. Chernov
  • M. M. Potapenko
Article
  • 8 Downloads

Using the methods of scanning (electron backscatter diffraction) and transmission electron microscopy, an investigation of the influence of microstructure of a V–Cr–Ta–Zr alloy on the rate of surface oxide scale formation in the course of its chemical-heat treatment using oxidation in air is performed. It is shown that a preliminary plastic deformation, ensuring a multiple increase in the density of dislocations and misorientation boundaries, results in a 10% thicker surface oxide layer and a respective increase in the concentration of oxygen in the alloy during the final stage of its chemical-heat treatment. The role of this factor in developing the chemical-heat treatment regimes is discussed.

Keywords

vanadium alloys thermomechanical treatment grain and defect structure chemical-heat treatment oxygen concentration oxidation rate transmission and scanning electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fromm and E. Gebhardt, Gases and Carbon in Metals, Springer Verlag, Berlin (1976).Google Scholar
  2. 2.
    V. K. Grigorovich and E. N. Sheftel, Dispersion Hardening of Refractory Metals [in Russian], Nauka, Moscow (1980).Google Scholar
  3. 3.
    J. M. Chen, V. M. Chernov, R. J. Kurtz, and T. Muroga, J. Nucl. Mater., 417, 289–294 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    T. Muroga, J. M. Chen, V. M. Chernov, et al., J. Nucl. Mater., 455, 263–268 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    A. N. Tymentsev, A. D. Korotaev, Yu. P. Pinzhin, et al., J. Nucl. Mater., 329333, 429–433 (2004).Google Scholar
  6. 6.
    A. N. Tymentsev, I. A. Ditenberg, K. V. Grinyaev, et al., J. Nucl. Mater., 413, 103–106 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    H. Kurishita, T. Kuwabara, and M. Hasegawa, Mater. Sci. Eng. A, 432, 245–252 (2006).CrossRefGoogle Scholar
  8. 8.
    A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, et al., J. Nucl. Mater., 367370, 853–857 (2007).Google Scholar
  9. 9.
    M. M. Potapenko, V. M. Chernov, V. A. Drobyshev, et al., Phys. Atomic Nuclei., 78, No. 10, 1087–1091 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    V. M. Chernov, M. M. Potapenko, V. A. Drobyshev, et al., Nucl. Mater. Energy, 34, 17–21 (2015).Google Scholar
  11. 11.
    A. N. Tymentsev, I. A. Ditenberg, K. V. Grinyaev, et al., Phys. Atomic Nuclei, 78, No. 10, 1092–1099 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    J. M. Chen, T. Muroga, S. Y. Qiu, et al., J. Nucl. Mater., 329333, 401–405 (2004).Google Scholar
  13. 13.
    I. A. Ditenberg, I. V. Smirnov, A. S. Tsverova, et al., Russ. Phys. J., 61, No. 5, 936–941 (2018).CrossRefGoogle Scholar
  14. 14.
    A. N. Tyumentsev, I. A. Ditenberg, A. D. Korotaev, and K. I. Denisov, Phys. Mesomech., 16, No. 4, 319–334 (2013).CrossRefGoogle Scholar
  15. 15.
    A. N. Tyumentsev and I. A. Ditenberg, Russ. Phys. J., 54, No. 9, 977–988 (2012).CrossRefGoogle Scholar
  16. 16.
    G. Horz, Metallurg. Trans., 3, No. 2, 3069–3076 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Ditenberg
    • 1
    • 2
  • I. V. Smirnov
    • 1
    • 2
  • A. S. Tsverova
    • 2
  • A. N. Tyumentsev
    • 1
    • 2
  • K. V. Grinyaev
    • 1
    • 2
  • V. M. Chernov
    • 3
  • M. M. Potapenko
    • 3
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.SC A. A. Bochvar High-Technology Scientific Research Institute of Inorganic MaterialsMoscowRussia

Personalised recommendations