Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1499–1505 | Cite as

Thermal Annealing Effect on Structure and Properties of Tungsten Surface Irradiated with High Fluence and Low Energy Alpha-Particles

  • T. M. Aldabergenova
  • S. B. Kislitsin
  • G. Z. Ganeev
  • W. Wieleba
Article
  • 6 Downloads

The paper presents research into the surface morphology, helium cluster formation and mechanical properties of high-purity tungsten after the high fluence and low-energy helium ion implantation and subsequent annealing. Investigations are based on scanning electron and atomic force microscopy observations and thermal desorption measurements. Because of the local stresses appearing within the energy loss straggling of helium ions, atoms migrate at distances significantly increasing the ion projective range, and create mobile coalescence of helium atoms and immobile helium-vacancy clusters. The latter form helium bubbles in the energy loss straggling which cause the surface blistering. Local stresses induced by helium coalescence and helium-vacancy clusters beyond the energy loss straggling result in the material strengthening or hardness increase. Subsequent 600°С annealing provides the size growth of blisters on the metal surface irradiated with helium ions and high helium desorption due to the migration of mobile coalescence of helium atoms. With the increasing annealing temperature from 600 to 1000°С, the layer corresponding to the projective range of helium ions fully fractures due to the interstitial helium atoms releasing from immobile helium-vacancy clusters. After 1000°С annealing, the tungsten hardness returns to its initial value.

Keywords

blistering tungsten alpha irradiation hardness thermal desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bolt, V. Barabash, W. Krauss, et al., J. Nucl. Mater., 329–333, 66–73 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    Yong Chen, Liangbin Hu, Changjun Qiu, et al., J. Mater. Eng. Perform., 26, No. 8, 41–31 (2017).CrossRefGoogle Scholar
  3. 3.
    V. V. Uglov, G. Abadias, S. V. Zlotski, et al., Vacuum, 143, 491-493 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. I. Potekaev, Klopotov A.A., Grinkevich L.S., et al., Russ. Phys. J., 59, No. 1, 99–108 (2016).CrossRefGoogle Scholar
  5. 5.
    S. B. Kislitsyn, A. I. Potekaev, V. V. Uglov, et al., IOP Publishing Conf. Series: Mater. Sci. Eng., 289, 012010 (2017).Google Scholar
  6. 6.
    Neu R. Tungsten as a Plasma Facing Material in Fusion Devices. IPP Bericht, 10, No. 25, 217 (2003). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.866.4066&rep=rep1&type=pdf.
  7. 7.
    I. V. Mazul’, in: Proc. Int. Sem. “Experimental Opportunities of Tokamak KTM and Research Program”. Astana (2005), pp. 33–35.Google Scholar
  8. 8.
    I. M. Neklyudov and G. D. Tolstolutskaya, VANT. Ser.: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie VANT. Ser.: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie. No. 3, 3–14 (2003).Google Scholar
  9. 9.
    H. Iwakiri, K. Yasunaga, K. Morishita, and N. Yoshida, Part 2, J. Nucl. Mater., 283– 287, 1134–1138 (2000).Google Scholar
  10. 10.
    С. Li, H. Greuner, Y. Yuan, et al., J. Nucl. Mater., 455, No. 1–3, 201–206 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    T. M. Aldabergenova, S. B. Kislitsin, A. C. Larionov, and G. S. Yar-Mukhamedova, AIP: Conf. Proc., 1783, 020003 (2016).Google Scholar
  12. 12.
    M. I. Guseva and Yu. V. Martynenko, Phys. Usp., 135, No. 4, 671–691 (1981).CrossRefGoogle Scholar
  13. 13.
    Th. Faney, “Numerical simulations of tungsten under helium irradiation”, PhD Dissertation, 2013, 116 p.Google Scholar
  14. 14.
    Duc Nguyen-Manh and Dudarev S. L. Trapping of He Clusters by Inert Gas Impurities in Tungsten: First-Principles Predictions and Experimental Validation. Culham Science Centre, Oxfordshire (2014), 8 p. www.ccfe.ac.uk/assets/Documents/CCFE-PR(14)07.pdf.
  15. 15.
    X.-Ch. Li, X. Shu, Y.-N. Liu, et al., J. Nucl. Mater., 426, 31–37 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. M. Aldabergenova
    • 1
    • 2
  • S. B. Kislitsin
    • 2
    • 3
  • G. Z. Ganeev
    • 2
  • W. Wieleba
    • 4
  1. 1.Al-Farabi Kazakh National UniversityAlmatyRepublic of Kazakhstan
  2. 2.The Institute of Nuclear Physics of the Ministry of Energy of the Republic of KazakhstanAlmatyRepublic of Kazakhstan
  3. 3.National Research Nuclear University MEPhIMoscowRussia
  4. 4.Wroclaw University of TechnologyWroclawPoland

Personalised recommendations