Russian Physics Journal

, Volume 61, Issue 8, pp 1491–1498 | Cite as

The Features of Structure Formation in Chromium-Nickel Steel Manufactured by a Wire-Feed Electron Beam Additive Process

  • A. V. Kolubaev
  • S. Yu. Tarasov
  • A. V. Filippov
  • Yu. A. Denisova
  • E. A. Kolubaev
  • A. I. Potekaev

The investigations of the metal macro- and microstructure are performed using the specimens manufactured from the 302 stainless steel via electron-beam additive layer manufacturing in a laboratory setup ensuring 3D printing of articles with circular interpolation. Successive padding of metal results in the formation of a relief representing alternate crests and troughs on the lateral side of the specimen. It is shown by the methods of optical and scanning electron microscopy that the metal of these specimens has a complex heterogeneous dendritic structure containing both relatively coarse grains and subgrains and finer grains. The fine structure of the resulting metal is characterized by a combination of the regions with marked banding and those with nearly regular-shaped grains both in the longitudinal and transverse directions. The grains of more equiaxed shapes are about 5–10 μm in size. It is hypothesized that an application of the additive process would allow manufacturing textured structures with predetermined orientations.


additive layer manufacturing electron-beam melting stainless steel dendritic structure microstructure defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Yampolskiy, W. E. King, J. Gatlin, et al., Additive Manufacturing, 21, 431–457 (2018).CrossRefGoogle Scholar
  2. 2.
    S. Tammas-Williams, H. Zhao, F. Léonard, et al., Mater. Characterizat., 102, 47–61 (2015).CrossRefGoogle Scholar
  3. 3.
    W. J. Sames, F. A. List, S. Pannala, et al., Int. Mater. Rev., 61, No. 5, 315–360 (2016).CrossRefGoogle Scholar
  4. 4.
    W. E. Frazier, J. Mater. Eng. Performan., 23, Iss. 6, 1917–1928 (2014).CrossRefGoogle Scholar
  5. 5.
    G. Vastola, G. Zhang, Q. X. Pei, and Y.-W. Zhang, Additive Manufacturing, 7, 57–63 (2015).CrossRefGoogle Scholar
  6. 6.
    S. Sahoo and K. Chou, Additive Manufacturing, 9, 14–24 (2016).CrossRefGoogle Scholar
  7. 7.
    A. Safdara, L.-Y. Wei, A. Snis, and Z. Lai, Mater. Characterizat., 65, 8–15 (2012).CrossRefGoogle Scholar
  8. 8.
    W. J. Sames, K. A. Unocic, R. R. Dehoff, et al., J. Mater. Res., 29, Iss. 17, 1920–1930 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    T. Wegrzyn, Welding Int., 6 (9), 690–694 (1992).CrossRefGoogle Scholar
  10. 10.
    S. Tammas-Williams, P. J. Withers, I. Todd, and P. B. Prangnell, Metallurg. Mater. Trans. A, 47, Iss. 5, 1939–1946 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    C. Y. Yap, C. K. Chua, Z. L. Dong, et al., Appl. Phys. Rev., 2, 041101 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. A. Popovich, E. V. Borisov, A. A. Popovich, et al., Mater. & Design, 131, 12–22 (2017).CrossRefGoogle Scholar
  13. 13.
    M. E. Fitzpatrick, A. T. Fry, P. Holdway, et al., Meas. Good Practice Guide, No. 52, 77 (2005).Google Scholar
  14. 14.
    V. I. Iveronova and G. P. Revkevich, Theory of X-Ray Diffraction: a course book [in Russian], MSU Publ., Moscow (1978).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Kolubaev
    • 1
  • S. Yu. Tarasov
    • 1
  • A. V. Filippov
    • 1
  • Yu. A. Denisova
    • 1
    • 2
  • E. A. Kolubaev
    • 1
  • A. I. Potekaev
    • 3
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia

Personalised recommendations