Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1478–1482 | Cite as

Screw Dislocations as Nucleation Centers of Twinned ε-Martensite Crystals with {443}α Habits in Titanium

  • M. P. Kashchenko
  • N. M. Kashchenko
  • V. G. Chashchina
Article

The formation of twinned crystals with habits close to {443}α in titanium with BCC–HCP (α − ε) reorganization is associated with initiation of the driving wave process by the elastic field of screw segments of rectangular dislocation loops with Burgers vectors along \( {\left\langle 1\overline{1}0\right\rangle}_{\upalpha} \) directions. Significant deviation of normals of ℓ-waves (responsible for formation of habits) from planes {110}α creates conditions for inclusion of s-waves (responsible for formation of twinned crystals) in the wave process during α–γ (BCC–HCP) martensitic transformation. This makes it possible to go through the intermediate γ-phase: α–γ–ε.

Keywords

martensitic transformation dynamic theory habit planes nucleation centers twinned crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Bilbi and I. V. Khristian, Usp. Fiz. Nauk, 70, No. 4, 515–564 (1960).CrossRefGoogle Scholar
  2. 2.
    G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977).Google Scholar
  3. 3.
    M. S. Wechsler, D. S. Lieberman, and T. A. Read, J. Metals, November, 1503–1515 (1953).Google Scholar
  4. 4.
    A. L. Roitburd, Usp. Fiz. Nauk, 113, No. 1, 69–104 (1974).CrossRefGoogle Scholar
  5. 5.
    J. Friedel, Dislocations [Russian translation], Mir, Moscow (1967).Google Scholar
  6. 6.
    M. P. Kashchenko and V. G. Chashchina, Phys. Usp., 181, No. 4, 331−349 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    O. M. Ivasishin, N. S. Kosenko, and S. V. Shevchenko, J. Phys. IV, 5, 1017–1022 (1995).Google Scholar
  8. 8.
    K. Teodosiu, Elastic Models of Defects in Crystals [Russian translation], Mir, Moscow (1985).Google Scholar
  9. 9.
    K. N. Dzhemilev, Calculations of elastic fields of dislocation loops and crystones for identification of martensite formation centers, Candidate’s Dissertation in Physical-Mathematical Sciences, Ekaterinburg (2014).Google Scholar
  10. 10.
    M. P. Kashchenko, K. N. Dzhemilev, and V. G. Chashchina, Russ. Phys. J., 55, No. 9, 1052–1055 (2012).CrossRefGoogle Scholar
  11. 11.
    M. P. Kashchenko, K. N. Dzhemilev, and V. G. Chashchina, Russ. Phys. J., 55, No. 10, 1235–1237 (2012).CrossRefGoogle Scholar
  12. 12.
    M. P. Kashchenko and V. G. Chashchina, Russ. Phys. J., 59, No. 10, 1575–1580 (2017).CrossRefGoogle Scholar
  13. 13.
    V. G. Chashchina, Russ. Phys. J., 52, No. 7, 763–765 (2009).CrossRefGoogle Scholar
  14. 14.
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, M.I.T. Press, Cambridge (1971).Google Scholar
  15. 15.
    M. Kashchenko, N. Kashchenko, and V. Chashchina, Mater. Today: Proc., 4, 4605–4610 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. P. Kashchenko
    • 1
    • 2
  • N. M. Kashchenko
    • 2
  • V. G. Chashchina
    • 1
    • 2
  1. 1.Ural State Forest Engineering UniversityEkaterinburgRussia
  2. 2.Ural Federal University Named after the First President of Russia B. N. YeltsinEkaterinburgRussia

Personalised recommendations