Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1450–1456 | Cite as

Electrophysical and Physical-Chemical Properties of Ohmic Contacts to III-N Compounds

  • V. N. Brudnyi
  • M. D. Vilisova
  • L. É. Velikovskii
  • P. Е. Sim
  • P. A. Brudnyi
Article
  • 3 Downloads

Experimental data on studying ohmic contacts based on single-layer and multilayer metallizations on GaN and (In, Al, Ga)N solid solutions are analyzed. The contact resistance of the Ti/Al/Mo/Au and Ti/Al/Mo/W/Au metallizations on undoped GaN is studied. The dependences of the contact resistance on the GaN surface treatment before the metallization and on the metallization annealing regimes are investigated.

Keywords

gallium nitride (AlInGa)N solid solutions metallization ohmic contacts charge neutrality level surface treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Brudnyi, A. V. Kosobutsky, and N. G. Kolin, Russ. Phys. J., 51, 1270 (2008).CrossRefGoogle Scholar
  2. 2.
    V. N. Brudnyi, A. V. Kosobutsky, and N. G. Kolin, Semiconductors, 43, 1271 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Brudnyi, Russ. Phys. J., 58, 1613 (2016).CrossRefGoogle Scholar
  4. 4.
    H. Morkoc, Handbook of Nitride Semiconductors and Devices. V. 2. Electronic and Optical Process in Nitrides, Wiley-VCH Verlag, Berlin (2009).Google Scholar
  5. 5.
    A. E. Belyaev, A. E. Bessolov, N. S. Boltovets, et al., Physico-Technological Problems of Nitride-Gallium Electronics [in Russian], Naukova Dumka, Kiev (2016).Google Scholar
  6. 6.
    Ch. Lu, H. Chen, X. Lv, Xie X., and S. N. Mohammad, J. Appl. Phys., 91, 9218 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    S. N. Mohammad, J. Appl. Phys. 95, 7940 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    Y. J. Lin, Y. M. Chen, T. J. Cheng, and Q. Ker, J. Appl. Phys., 95, 571 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    M. E. Lin, Z. Ma, F. Huang, et al., Appl. Phys. Lett., 64, 1003 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wu, W. Jiang, B. Keller, et al. Sol. State Electron., 41, 163 (1997).ADSGoogle Scholar
  11. 11.
    B. V. Daele, G. V. Tendeloo, W. Ruythooren, et al., Appl. Phys. Lett., 87, 061905 (2005).Google Scholar
  12. 12.
    G. Greco, F. Lucolano, and F. Roccaforte, Appl. Surf. Science, 383, 324 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Shostachenko, Y. A. Porokhonko, R. V. Zakharchenko, et al., J. Phys: Conf. Series, 938, 012072 (2017).Google Scholar
  14. 14.
    O. Kubaschewski, C. B. Alcock, and P. J. Spencer, Mater. Thermo – Chemistry, Pergamon Press, Oxford, N-Y (1993).Google Scholar
  15. 15.
    J. D. Guo, C. I. Lin, M. S. Feng, et al., Appl. Phys. Lett., 68, 235 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    V. N. Brudnyi, S. N. Grinayev, and N. G. Kolin, Russ. Phys. J., 49, 874 (2006).CrossRefGoogle Scholar
  17. 17.
    B. P. Luther, S. E. Mohney, T. N. Jackson, et al. Appl. Phys. Lett., 70, 57 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    Y. J. Lee, S. J. Yu, H. Asahi, et.al., J. Electron. Materials, 27, 829 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    F. M. Mohhamad, L. Wang, I. Adesida, and E. Pinev, J. Appl. Phys., 100, 023708 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    V. R. Reddy, C. K. Ramesh, J. Optoelectr. Adv., Mater., 6, 177 (2004).Google Scholar
  21. 21.
    Z. Fan, S. N. Mohammad, W. Kim, et al. Appl. Phys. Lett., 68, 1672 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    B. Jacobs, M. C. Kramer, E. J. Geluk, and F. Karouta, J. Crystal Growth., 241, 15 (2002).ADSCrossRefGoogle Scholar
  23. 23.
    R. Gong, W. Wang, S. Liu, et al., Appl. Phys. Lett., 97, 062115 (2010).Google Scholar
  24. 24.
    A. Fontsere, A. Perez -Tomas, M. Placidi, et al., Appl. Phys. Lett., 99, 213504 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    T. Nakayama, H. Miyamoto, Y. Ando, et al., Appl. Phys. Lett., 85, 3775 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    H. C. Lee, J. W. Bae, and G. Y. Yeom, J. Korean. Phys. Soc., 51, 1046 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    W. Macherzynski, J. Gryglewicz, A. Stafinia, et al., Appl. Phys., 14, 83 (2016).Google Scholar
  28. 28.
    V. Kumar, L. Zhou, D. Selvanathan, and I. Adesida, J. Appl. Phys., 92, 1712 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    A. Motayed, K. A. Jones, M. A. Derenge M.A., et al., J. Appl. Phys., 95, 1516 (2004).Google Scholar
  30. 30.
    J. D. Hwang, G. H. Yang, W. T. Chang, et al., Microelectron. Eng., 77, 71 (2005).CrossRefGoogle Scholar
  31. 31.
    A. Motayed, R. Bathe, M. Wood, et al., J. Appl. Phys., 93, 1087 (2003).ADSCrossRefGoogle Scholar
  32. 32.
    A. V. Davydov, A. Mofayed, W. J. Boettinger, et al., Phys. Stat. Solidi (c), 2, 2551 (2005).CrossRefGoogle Scholar
  33. 33.
    C. M. Pelto, Y. A. Chang, Y. Chen, and R. S. Williams, J. Appl. Phys., 92, 4283 (2002).ADSCrossRefGoogle Scholar
  34. 34.
    P. Murugapandiyan, S. Ravimaran, and J. William, J. Science: Adv. Mater. Dev., 2, 515 (2017).Google Scholar
  35. 35.
    H. W. Jang, K. H. Kim, J. K. Kim, et al.,Appl. Phys. Lett., 79, 1822 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    H. K. Cho, N. Hossain, J. W. Bae, and I. Adesida, Sol. State Electron., 49, 774 (2005).ADSCrossRefGoogle Scholar
  37. 37.
    J. H. Son, Y. H. Song, H. K. Yu, and J. L. Lee, Appl. Phys. Lett., 95, 062108 (2009).ADSCrossRefGoogle Scholar
  38. 38.
    L. Zhou., W. Landford, A. T. Ping, et al., Appl. Phys. Lett., 76, 3451 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    J. Narayan, W. Wang, N. H. Oh, et al., Appl. Phys. Lett., 81, 3978 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    H. W. Jang, S. M. Jeon, and J. T. Lee, Phys. Stat. Solidi (c), 1, 227 (2002).Google Scholar
  41. 41.
    H. W. Jang and J. L. Lee, Appl. Phys. Lett., 85, 5920 (2004).ADSCrossRefGoogle Scholar
  42. 42.
    M. Suzuki, T. Kawakami, T. Arai, et al., Appl. Phys. Lett. , 74, 275 (1999).ADSCrossRefGoogle Scholar
  43. 43.
    J. S. Kwak, O. H. Nam, and Y. Park, Appl. Phys. Lett., 80, 3554 (2002).ADSCrossRefGoogle Scholar
  44. 44.
    J. S. Kwak, O. H. Nam, and Y. Park, J. Appl. Phys., 95, 5917 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    Y. Yue, Z. Hu, J. Guo, et al., IEEE Electron Dev. Lett., 33, 988 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    L. Wang, I. Adesida, A. M. Dabiran, et al. Appl. Phys. Lett., 93, 052109 (2008).Google Scholar
  47. 47.
    L. Zhou, J. H. Leach, X. Ni, et al., J. Appl. Phys., 107, 014508 (2010).ADSCrossRefGoogle Scholar
  48. 48.
    J. L. Leez and J. K. Kim, J. Electrochem. Soc., 147, 2297 (2000).CrossRefGoogle Scholar
  49. 49.
    J. S. Jang and T. S. Seong, J. Appl. Phys., 88, 3064 (2000).ADSCrossRefGoogle Scholar
  50. 50.
    J. S. Jang, S. J. Park, and T. Y. Seong, J. Vac. Sci. & Technol., B17, 2667 (1999).CrossRefGoogle Scholar
  51. 51.
    J. S. Jang and T. Y. Seong, Appl. Phys. Lett., 76, 2743 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    K. A. Rickert, A. B. Ellis, F. J. Himpsel, et al., Appl. Phys. Lett., 80, 204 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    W. Hou, T. Detchprohm, and C. Wetzel, Appl. Phys. Lett., 101, 242105 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. N. Brudnyi
    • 1
  • M. D. Vilisova
    • 1
  • L. É. Velikovskii
    • 1
  • P. Е. Sim
    • 1
  • P. A. Brudnyi
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations