Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1443–1449 | Cite as

Structural Modification of Graphene on Copper Substrates Irradiated by Nanosecond High-Intensity Ion Beams

  • O. G. Poddubskaya
  • P. P. Kuzhir
  • А. V. Stepanov
  • A. A. Martynenko
  • G. E. Remnev
Article
  • 2 Downloads

Interaction of a nanosecond high-intensity pulsed ion beam with thin graphene films on copper substrates is analyzed. Methods of Raman spectroscopy are used to investigate the degree of graphene degradation depending on the integral implanted dose. The role of the substrate in the structural degradation of graphene irradiated by charged particle beams is demonstrated using the software package SRIM, intended for modeling radiative defect cascades under irradiation by charged particle beams, and the data on radiation resistance of graphene available in the literature.

Keywords

graphene high-intensity ion beams electromagnetic radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Singh, D. Joung, L. Zhai, et al., Prog. Mater. Sci., 56, 1178–1271 (2011).CrossRefGoogle Scholar
  2. 2.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Nature, 438, 197–200 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Balandin, S. Ghosh, W. Bao, et al., Nano Lett., 8, 902–907 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    S. S. Dhillon, M. S. Vitiello, E. H. Linfield, et al., J. Phys. D, 50, 043001 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    I. A. Tsyganov, N. P. Guseinov, and A. M. Il’in, Izv. Vyssh. Uchebn. Zaved. Fiz., 54, No. 1/3, 307–310 (2011).Google Scholar
  7. 7.
    G. Gawlik, P. Ciepielewski, J. Jagielski, and J. Baranowski, Nucl. Instrum. Methods Phys. Res. B, 406, 683–688 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, et al., Phys. Rev. B, 81, 153401 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, and J. Keinonen, Nanotechnology, 22, 175306 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. Stolyarova, D. Stolyarov, K. Bolotin, et al., Nano Lett., 9, 332–337 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    I. Vlassiouk, M. Regmi, P. Fulvio, et al., ACS Nano, 5 (7), 6069–6076 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Ferrari, J. Meyer, V. Scardaci, et al., Phys. Rev. Lett., 97, 187401–4 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    S. U. Yu, Y. Cho, B. Park, et al., Chem. Commun., 49, 5474 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Hao, Y. Wang, L. Wang, et al., Small, 6 (2), 195–200 (2010).CrossRefGoogle Scholar
  15. 15.
    V. I. Boiko and V. V. Evstigneev, Introduction to Physics of Interaction of High-Power Charged Particle Beams with Matter [in Russian], Energoatomizdat, Moscow (1988).Google Scholar
  16. 16.
    I. V. Amirkhanov, E. V. Zemlyunaya, I. V. Puzynin, et al., Report of Joint Institute of Nuclear Research R11-2001-164, Dubna (2001).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. G. Poddubskaya
    • 1
  • P. P. Kuzhir
    • 1
    • 2
  • А. V. Stepanov
    • 2
  • A. A. Martynenko
    • 2
  • G. E. Remnev
    • 2
  1. 1.Research Institute for Nuclear Problems of Belarusian State UniversityMinskBelarus
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations