Russian Physics Journal

, Volume 61, Issue 8, pp 1435–1442 | Cite as

Magnetic and Electrical Properties of Hg1–xMnxFeyTe1–zSz Crystals

  • É. V. Maistruk

Electrical and magnetic properties of the semimagnetic semiconductor Hg1–x–yMnxFeyTe1–zSz solid solutions were studied in the ranges of temperatures 77–320 K and magnetic fields 0.25–6 kOe. In the crystals under study, the effect of giant magnetoresistance was observed that reached 75% at low temperatures. This is due to the fact that charge carriers that participate in the current transfer interact with a magnetized ferromagnetic cluster subsystem (Fe–Fe–Fe) and become spin-polarized. It is these spin-polarized charge carriers that are strongly scattered on antiferromagnetic Mn–S–Mn–S and Mn–Te–Mn–Te clusters, since the magnetic moments inside the clusters and the resulting magnetic moments of these clusters are randomly oriented.


semiconductor solutions magnetoresistance cluster subsystems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Jelínková, M. E. Doroshenko, M. Jelínek, et al., SPIE Proc. Solid State Lasers XXVI: Technology and Devices, 10082, 100820F (2017).Google Scholar
  2. 2.
    Yang Ge, Gu Genda, A. E. Bolotnikov, et al., Electron. Mater. Lett., 11, No. 3, 500 (2016).Google Scholar
  3. 3.
    Wang Zewen, Jie Wanqi, Xie Yong, and Wang Haoliang, J. Cryst. Growth, 305, No. 1. – P. 104 (2007).CrossRefGoogle Scholar
  4. 4.
    Shen Min, Zhang Jijun, Linjun Wang, et al., Mater. Sci. Semicond. Proc., 31, 536 (2015).Google Scholar
  5. 5.
    Wenqi Wu, Jijun Zhang, Linjun Wang, et al., Phys. Status Solidi C, 13, No. 7–9, 408 (2016).ADSGoogle Scholar
  6. 6.
    T. T. Kovalyuk, E. V. Maistruk, and P. D. Maryanchuk, Inorgan. Mater., 52, No. 5, 447 (2016).CrossRefGoogle Scholar
  7. 7.
    T. T. Kovalyuk, P. D. Maryanchuk, É. V. Maistruk, and I. P. Koziarskyi, Inorg Mater., 50, No. 3, 241–245 (2014).CrossRefGoogle Scholar
  8. 8.
    Hsu Hsiu-Chuan, Liu Xin, and Xin Chao-Xing Liu, Phys. Rev. B, 88, 085315 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    P. D. Mar’yanchuk and I. P. Koziarskyi, Inorg. Mater., 48, No. 7, 655–661 (2012).CrossRefGoogle Scholar
  10. 10.
    P. D. Mar’yanchuk and I. P. Koziarskyi, Russ. Phys. J., 53, No. 1, 60–66 (2010).CrossRefGoogle Scholar
  11. 11.
    P. D. Maryanchuk and E. V. Maistruk, Neorg. Mater., 44, No. 5, 475-480 (2008).CrossRefGoogle Scholar
  12. 12.
    P. D. Mar’yanchuk and E. V. Maistruk, Russ. Phys. J., 50, No. 10, 985-992 (2007).CrossRefGoogle Scholar
  13. 13.
    Solid Solutions in Semiconductor Systems, Reference Book [in Russian], Nauka, Moscow (1978).Google Scholar
  14. 14.
    V. N. Tomashik and V. I. Grytsiv, State Diagrams of Systems based on Semiconductor Compounds AIIBVI [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  15. 15.
    E. A. Zavadskii and V. I. Val’kov, Magnetic Phase Transitions [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  16. 16.
    P. D. Maryanchuk, Izv. Vyssh. Uchebn. Zaved. Fiz., 27, No. 1, 122–124 (1984).Google Scholar
  17. 17.
    P. D. Mar’yanchuk and N. P. Gavaleshko, Izv. Acad. Nauk SSSR, Neorg. Mater., 23, No. 8, 1271 (1987).Google Scholar
  18. 18.
    C. C.Y. Kwan, J. Basinski, and J. C. Wodley, Phys. Stat. Sol. B, 48, 699 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine

Personalised recommendations