Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1402–1409 | Cite as

Evolution of the Information Difference in the Process of Self-Organization During Transition from a Laminar to Turbulent Flow for Nonextensive Systems. I-Theorem

  • R. G. Zaripov
Article
  • 4 Downloads

Evolution of the parametric q-entropy and the q-information difference is considered during transition from a laminar to turbulent flow for nonextensive self-organizing systems. The S- and I-theorems on changes of measures under the Gibbs condition of mean energy constancy are proved.

Keywords

nonextensivity self-organization entropy information difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Zaripov, New Measures and Methods in Information Theory [in Russian], Publishing House of Kazan State Technical University, Kazan (2005).Google Scholar
  2. 2.
    Tsallis C. Introduction to Nonextensive Statistical Mechanics. Approaching a Complex World, Springer, New York (2009).zbMATHGoogle Scholar
  3. 3.
    R.G. Zaripov, Principles of Nonextensive Statistical Mechanics and Geometry of Disorder and Order Measures [in Russian], Publishing House of Kazan State Technical University, Kazan (2010).Google Scholar
  4. 4.
    J. Naudts, Generalized Thermostatistics, Springer, London (2011).CrossRefGoogle Scholar
  5. 5.
    J. Havrda and F. Charvat, Kybernetika, 3, 30–34 (1967).MathSciNetGoogle Scholar
  6. 6.
    Z. Daroczy, Inform. Contr., 16, 36–51 (1970).CrossRefGoogle Scholar
  7. 7.
    P. N. Rathie and Pl. Kannappan, Inform. Contr., 20, 38–45 (1972).CrossRefGoogle Scholar
  8. 8.
    A. Renyi, Probability Theory, North-Holland Publ. Co., Amsterdam (1970).zbMATHGoogle Scholar
  9. 9.
    E. Feder, Fractal, [in Russian], Mir, Moscow (1991).Google Scholar
  10. 10.
    I. J. Taneja, Adv. Electron. Electron Phys., 76, 327 (1989); Bibliography is accessible at http:/www.mtm.ufsc.br/~ taneja/book.
  11. 11.
    R. G. Zaripov, Zh. Tekh. Fiz., 76, No. 11, 1–5 (2006).Google Scholar
  12. 12.
    S. Kullback, Information Theory and Statistics [in Russian], Nauka, Moscow (1967).zbMATHGoogle Scholar
  13. 13.
    R. G. Zaripov, Russ. Phys. J., 44, No. 11, 1159–1165 (2001).CrossRefGoogle Scholar
  14. 14.
    R. G. Zaripov, Russ. Phys. J., 47, No. 6, 647–655 (2004).MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. G. Zaripov, Zh, Tekh. Fiz., 79, No. 2, 6–10 (2009).Google Scholar
  16. 16.
    Yu. L. Klimontovich, Pis’ma Zh. Tekh. Fiz., 8, No. 23, 1412–1416 (1983).Google Scholar
  17. 17.
    R. G. Zaripov, Zh. Tekh. Fiz., 58, No. 11, 2247–2249 (1988).Google Scholar
  18. 18.
    Yu. L. Klimontovich, Pis’ma Zh. Tekh. Fiz., 10, No. 2, 80–83 (1984).Google Scholar
  19. 19.
    R. G. Zaripov, Zh. Tekh. Fiz., 86, No. 6, 24–27 (2016).Google Scholar
  20. 20.
    J. A. S. Lima and R. Silva, Phys. Lett. A, 338, 272–276 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    R. G. Zaripov, Russ. Phys. J., 56, No. 1, 31–36 (2013).CrossRefGoogle Scholar
  22. 22.
    R. G. Zaripov, Russ. Phys. J., 30, No. 7, 588–591 (1987).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mechanics and Engineering – Subdivision of the Federal State Budgetary Institution of Science“Kazan Scientific Center of the Russian Academy of Sciences,”KazanRussia

Personalised recommendations