Advertisement

Russian Physics Journal

, Volume 61, Issue 8, pp 1383–1391 | Cite as

Models of Generalized Scalar-Tensor Gravitation Theories with Radiation Allowing the Separation of Variables in the Eikonal Equation

  • K. E. Osetrin
  • A. E. Filippov
  • E. K. Osetrin
Article
  • 5 Downloads

Exact solutions are obtained for models of general scalar-tensor gravitational theories admitting the existence of privileged coordinate systems in which the eikonal equation can be integrated by the method of complete separation of variables of (2.1) type. Characteristics of radiation and explicit forms of functions of the scalar field entering into the field equations of generalized scalar-tensor gravitational theory are obtained.

Keywords

alternative gravitational theories scalar-tensor gravitational theories integrable spacetime models pure radiation eikonal equation separation of variables exact solutions in gravitational theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys. Rep., 513, 1–189 (2012).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys., 4, 115–146 (2007).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Nojiri and S. D. Odintsov, Phys. Rep., 505, 59–144 (2011).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    V. V. Obukhov, K. E. Osetrin, and Yu. A. Rybalov, Grav. Cosmol., 14, No. 1, 104–108 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    E. Osetrin and K. Osetrin, J. Math. Phys., 58, No. 11, 112504 (2017).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    P. Stackel, Uber die Integration der Hamilton – Jacobischen Differential-Gleichung Mittels Separation der Variabeln, Hakilitationsschrift, Halle (1891).zbMATHGoogle Scholar
  7. 7.
    P. Stackel, Math. Ann., 42, 537–563 (1893).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. N. Shapovalov, Sov. J. Math., 20, 1117 (1979).Google Scholar
  9. 9.
    V. N. Shapovalov, Sov. Phys. J., 21, No. 9, 1124–1129 (1978).CrossRefGoogle Scholar
  10. 10.
    V. V. Obukhov and K. E. Osetrin, Proc. of Science WC2004, 027 (2004).Google Scholar
  11. 11.
    V. G. Bagrov, V. V. Obukhov, K. E. Osetrin, and A. E. Fipippov, Grav. Cosmsol., 5, No. 4 (20), Suppl., 10–16 (1999).Google Scholar
  12. 12.
    V. V. Obukhov, K. E. Osetrin, and A. E. Filippov, Russ. Phys. J., 45, No. 1, 42–50 (2002).CrossRefGoogle Scholar
  13. 13.
    V. G. Bagrov, V. V. Obukhov, and K. E. Osetrin, Gen. Relativ. Gravit., 20, Nо. 11, 1141–1154 (1988).Google Scholar
  14. 14.
    A. N. Makarenko and K. E. Osetrin, Russ. Phys. J., 42, No. 10, 889–896 (1999).CrossRefGoogle Scholar
  15. 15.
    K. E. Osetrin, V. V. Obukhov, and A. E. Filippov, J. Phys. A, 39, Nо. 21, 6641–6647 (2006).Google Scholar
  16. 16.
    V. G. Bagrov, A. D. Istomin, V. V. Obukhov, and K. E. Osetrin, Russ. Phys. J., 39, No. 8, 744–749 (1996).CrossRefGoogle Scholar
  17. 17.
    V. G. Bagrov, V. V. Obukhov, and K. E. Osetrin, Russ. Phys. J., 40, No. 10, 995–999 (1997).CrossRefGoogle Scholar
  18. 18.
    K. Osetrin, A. Filippov, and E. Osetrin, Mod. Phys. Lett. A, 31, Nо. 06, 1650027 (2016).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. E. Osetrin
    • 1
  • A. E. Filippov
    • 1
  • E. K. Osetrin
    • 1
  1. 1.Tomsk State Pedagogical UniversityTomskRussia

Personalised recommendations