Russian Physics Journal

, Volume 61, Issue 8, pp 1367–1375 | Cite as

Study of the Weak Field Sensor on the Resonant Microstrip Structure with a Thin Ferromagnetic Film

  • B. A. BelyaevEmail author
  • N. M. Boev
  • A. V. Izotov
  • P. N. Solovyev
  • V. V. Tyurnev

The paper examines the characteristics of the miniature sensor of weak magnetic fields on the resonant microstrip structure with a thin ferromagnetic film. The authors calculated the frequency response of irregular microstrip resonator containing anisotropic magnetic film in quasi-static approximation. The resonator is connected to transmission lines via coupling capacities. The authors determined the optimal directional angles of the constant magnetic displacement field ensuring maximum sensitivity of the sensor. They examined the impact of angular and amplitude dispersion of uniaxial magnetic anisotropy of thin film upon the sensor characteristics. The regularities determined in this research qualitatively agree with the experimental results.


microstrip resonator thin magnetic film frequency response sensor of weak magnetic fields quality factor scattering matrix magnetometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Erkan and C. Jekeli, J. Appl. Geophys., 74, 142–150 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    D. Gubbins, Space Sci. Rev., 155, 9–27 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    H. U. Auster, K. H. Glassmeier, W. Magnes, and O. Aydogar, Space Sci. Rev., 141, 235–264 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. Díaz-Michelena, Sensors, 9, 2271–2288 (2009).CrossRefGoogle Scholar
  5. 5.
    C. Gaffney, Archaeometry, 50, Issue 2, 313–336 (2008).CrossRefGoogle Scholar
  6. 6.
    T. Wang, Y. Zhou, C. Lei, and J. Luo, Biosens. Bioelectron., 90, 418–435 (2017).CrossRefGoogle Scholar
  7. 7.
    A. Grosz, M. J. Haji-Sheikh, and S. C. Mukhopadhyay, High Sensitivity Magnetometers, Switzerland, Springer (2017).CrossRefGoogle Scholar
  8. 8.
    A. E. Mahdia, L. Panina, and D. Mapps, Sensors and Actuators A., 105, 271–285 (2003).CrossRefGoogle Scholar
  9. 9.
    D. Budker and M. Romalis, Nature Phys., 3, 227–234 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    E. B. Aleksandrov and A. K. Vershovskii, Physics-Uspekhi, 52, Issue 6, 573–602 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    P. Ripka, Sensors and Actuators A., 33, 129–141 (1992).CrossRefGoogle Scholar
  12. 12.
    J. E. Danielsena, E. Auken, F. Jorgensen, et al., J. Appl. Geophys., 53, 181–198 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instruments and Experimental Techniques, 59, Issue 3, 425–432 (2016).CrossRefGoogle Scholar
  14. 14.
    V. V. Tyurnev, Journal of Communications Technology and Electronics, 53, Issue 7, 814–822 (2008).CrossRefGoogle Scholar
  15. 15.
    V. V. Tyurnev, Microwave Circuit Theory [in Russian], Krasnoyarsk, KSTU publishing center (2003).Google Scholar
  16. 16.
    K.C. Gupta, R. Garg, R. Chadha, Computer-Aided Design of Microwave Circuits, Artech House (1981).Google Scholar
  17. 17.
    A. G. Gurevich, Magnetic Resonance in Ferrite and Antiferromagnetic Materials [in Russian], Nauka, Moscow (1973).Google Scholar
  18. 18.
    B. A. Belyaev, A. V. Izotov, S. Ya. Kiparisov, G. V. Skomorokhov, Physics of the Solid State, 50, Issue 4, 676–683 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    B. A. Belyaev, A. V. Izotov, and P. N. Solovev, Physica B., 481, 86–90 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. A. Belyaev
    • 1
    • 2
    Email author
  • N. M. Boev
    • 1
    • 2
  • A. V. Izotov
    • 1
    • 2
  • P. N. Solovyev
    • 1
    • 2
  • V. V. Tyurnev
    • 1
    • 2
  1. 1.L. V. Kirensky Institute of Physics of the Krasnoyarsk Research Center of the Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations