Advertisement

Russian Physics Journal

, Volume 61, Issue 7, pp 1288–1293 | Cite as

Plasmonic Hybrid Biocomposite as an Effective Substrate for Detection of Biomolecules by Surface-Enhanced Raman Spectroscopy

  • R. V. Chernozem
  • M. A. Surmeneva
  • V. Atkin
  • B. Krause
  • T. Baumbach
  • B. V. Parakhonskiy
  • D. Khalenkow
  • A. G. Skirtach
  • R. A. Surmenev
Article
  • 15 Downloads

The enhancement of the Raman light scattering signal from the surface of the porous hybrid biocomposites based on polyhydroxybutyrate (PHB), calcium carbonate (CaCO3), and nanoplasmonic Ag particles is investigated. Based on PHB, fibrous scaffolds are obtained by the electrospinning technique. The fibrous scaffolds have been covered by CaCO3 and Ag nanoparticles by means of mineralization in salt solutions and Ag reduction reaction. Successful formation of the CaCO3 and Ag nanoparticles on the scaffold surface has been confirmed by the data of scanning electron microscopy, x-ray diffraction analysis, and infrared spectroscopy. Surface-enhanced Raman spectroscopy (SERS) of the obtained sample surface has demonstrated a significant enhancement of the Rhodamine 6G signal (Ef > 105) in comparison with the reference sample where the analyte concentration and the laser power were 100 times higher. Thus, the present research has confirmed prospects for the application of biocomposites based on polyhydroxybutyrate for detection and investigation of biomolecules by the SERS method.

Keywords

hybrid biocomposite scaffold SERS nanoplasmonic particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Prikhozhdenko, V. Atkin, B. Parakhonskiy, et al., RSC Adv., 6, 84505–84511 (2016).CrossRefGoogle Scholar
  2. 2.
    D. I. Braghirolli, D. Steffens, and P. Pranke, Drug Discovery Today, 19, 743–753 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Sombatmankhong, N. Sanchavanaki, P. Pavasant, and P. Supaphol, Polymer, 48, 1419–1427 (2007).CrossRefGoogle Scholar
  4. 4.
    K. Rezwan, Q. Chen, J. Blaker, and A. R. Boccaccini, Biomaterials, 27, 3413–3431 (2006).CrossRefGoogle Scholar
  5. 5.
    E. Lengert, M. Saveleva, A. Abalymov, et al., ACS Appl. Mater. Interfaces, 9, 21949–21958 (2017).CrossRefGoogle Scholar
  6. 6.
    M. S. Savelyeva, A. A. Abalymov, G. P. Lyubun, et al., J. Biomed. Mater. Res. Part A, 105, 94–103 (2017).CrossRefGoogle Scholar
  7. 7.
    W. Li, M. D. Rodriguez, P. Kluth, et al., Nucl. Instrum. Methods Phys. Res. B, 302, 40–47 (2013).Google Scholar
  8. 8.
    A. G. Xyla and P. G. Koutsoukos, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Cond. Phases, 85, 3165–3172 (1989).CrossRefGoogle Scholar
  9. 9.
    B. Plav, S. Kobe, and B. Orel, Kovine Zlitine Tehnol., 33, 6 (1999).Google Scholar
  10. 10.
    A. M. Gumel, M. S. M. Annuar, and T. Heidelberg, PLoS One, 7, e45214 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Da Silva, R. N. Oliveira, R. H. Mendonça, et al., J. Biomed. Mater. Res. Part B, 104, 106–115 (2016).CrossRefGoogle Scholar
  12. 12.
    C. Van Dyck, B. Fu, R. P. Van Duyne, et al., J. Phys. Chem. C, 122, No. 1, 465–473 (2017).CrossRefGoogle Scholar
  13. 13.
    D. Xu, H. Jiang, W. Yang, et al., Physica E, 102, 132–136 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    B. Parakhonskiy, Y. I. Svenskaya, A. Yashchenok, et al., Colloids Surf. B, 118, 243–248 (2014).CrossRefGoogle Scholar
  15. 15.
    E. Prikhozhdenko, E. Lengert, B. Parakhonskiy, et al., J. Phys. Chem. A, 110, 5973–5977 (2006).CrossRefGoogle Scholar
  16. 16.
    L. Jensen and G. C. Schatz, J. Phys. Chem. A, 110, 5973–5977 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. V. Chernozem
    • 1
    • 2
  • M. A. Surmeneva
    • 1
  • V. Atkin
    • 3
  • B. Krause
    • 4
  • T. Baumbach
    • 4
  • B. V. Parakhonskiy
    • 2
  • D. Khalenkow
    • 2
  • A. G. Skirtach
    • 2
  • R. A. Surmenev
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Universiteit GentGentBelgium
  3. 3.Saratov State UniversitySaratovRussia
  4. 4.Karlsruher Institut fur TechnologieKarlsruheGermany

Personalised recommendations