Russian Physics Journal

, Volume 61, Issue 6, pp 1175–1184 | Cite as

Topological Thermocompensation for Light-Emitting Diode Linear Modules of Filament Lamps

  • D. V. OzerkinEmail author
  • D. G. Starosek
  • V. I. Tuev

Results of theoretical and experimental investigations of the stationary thermal regime of linear modules of filament light-emitting diode lamps are presented. It is demonstrated that the concentrated heat sources (lightemitting diode crystals) placed on a substrate form a non-planar temperature profile that negatively affects the stability of light characteristics of the filament lamps. The concept of localization function is introduced for a one-dimensional non-uniform distribution of crystals along the substrate. It is proved that when placing point heat sources, there exists a certain dichotomy coefficient at which the crystal localization function provides the least curvature of the temperature profile at a characteristic point x. Experimental investigations demonstrate that the localization of crystals whose dichotomy coefficient differs from unity allows the order of curvature of the profile for the sample of light-emitting diode linear module to be decreased by an order of magnitude in comparison with samples possessing equidistant distribution of heat sources.


filament light-emitting diode lamp light-emitting diode crystal localization function dichotomy temperature profile heat equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Starosek and D. V. Ozerkin, V Mire Nauchn. Otkr., No. 12-3 (72), 922–937 (2015).Google Scholar
  2. 2.
    A. A. Vilisov, G. E. Remnev, S. A. Lipnik, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 56, No. 8/3, 169–171 (2013).Google Scholar
  3. 3.
    K. V. Korotkov, M. A. Romanova, and S. V. Smirnov, Proc. TUSUR Univ., 20, No. 1, 38–41 (2017).CrossRefGoogle Scholar
  4. 4.
    S. G. Nikiforov, Komp. Tekhnol., No. 7, 16–24 (2005).Google Scholar
  5. 5.
    E. F. Schubert, Light Emitting Diodes [Russian translation], Fizmatlit, Moscow (2008).Google Scholar
  6. 6.
    A. Pol’, Polyprovodn. Svetotekhn., No. 4, 14–16 (2010).Google Scholar
  7. 7.
    G. N. Dul’nev, V. G. Parfenov, and A. V. Sigalov, Methods of Calculation of Thermal Regime of Devices [in Russian], Radio i Svyaz’, Moscow (1990).Google Scholar
  8. 8.
    G. N. Dul’nev and É. M. Semyashkin, Heat Тransfer in Radio-Electronic Devices [in Russian], Énergiya, Leningrad (1968).Google Scholar
  9. 9.
    G. V. El’finov, Theory of Transitive Curves [in Russian], Transzheldorizdat, Moscow (1948).Google Scholar
  10. 10.
    A. V. Levitin, Algorithms: Introduction to the Construction and Analysis [Russian translation], Williams Publishers, Moscow (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations