Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1062–1069 | Cite as

The Influence of Warm abc-Pressing on the Structure and Mechanical Properties of Stable Chromium-Nickel-Molybdenum Steel

  • E. G. Astafurova
  • S. V. Astafurov
  • I. V. Ratochka
  • I. P. Mishin
  • O. N. Lykova
  • G. G. Maier
  • E. V. Melnikov
  • V. A. Moskvina
Article
  • 11 Downloads

The structure and properties of the 17Cr13Ni3Mo0.01C stable austenitic steel subjected to high-temperature plastic deformation by the abc-pressing (multiaxial forging) are investigated in the temperature range from 800 to 600°С. The results of investigations demonstrate that after the abc-pressing the steel has a single-phase austenitic ultrafine-grained structure with the size of its elements (grains and subgrains) of (200 ± 140) nm. The formation of the ultrafine-grained state increases the strength properties (0.2 proof stress increases threefold) and decreases the elongation value of the steel at room temperature compared to the coarse-grained specimens. An analysis of the contributions from hardening during abc-pressing evidences in favor of the strength improvement being primarily due to the grain refinement; it is well described by the Hall–Petch relationship. In this case steel with ultrafine-grained austenitic structure exhibits an effect of structural superplasticity at the temperatures T > 750°С: the elongation value at Т = 800°С is found to be 180%.

Keywords

austenitic stainless steel abc-pressing ultrafine-grained structure strength properties tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Salischev, R. G. Zaripova, and A. A. Zakirova, Metal Science and Heat Treatment, No. 2, 63–69 (2006).Google Scholar
  2. 2.
    S. V. Dobatkin, O. V. Rybal’chenko, and G. I. Raab, Mater. Sci. Eng. A, 463, 41–45 (2007).CrossRefGoogle Scholar
  3. 3.
    H. Wang, I. Shuro, M. Umemoto, et al., Mater. Sci. Eng. A, 556, 906–910 (2012).CrossRefGoogle Scholar
  4. 4.
    M. V. Karavaeva, M. M. Abramova, N. A. Enikeev, et al., Pis'ma Material., 7, No. 1, 29–33 (2017).Google Scholar
  5. 5.
    S. V. Dobatkin, O. V. Rybalchenko, N. A.Enikeev, et al., Mater. Lett., 166, 276–279 (2016).CrossRefGoogle Scholar
  6. 6.
    O. A. Kaibyshev, Plasticity and Superplasticity of Metals [in Russian], Metallurgiya, Moscow (1975).Google Scholar
  7. 7.
    A. P. Zhilyaev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained materials [in Russian], Fizmatlit, Moscow (2008).Google Scholar
  8. 8.
    A. V. Korznikov, G. F. Korznikova, R. G. Zaripova, et al., Pis'ma Material., 2, No. 1, 170–176 (2012).Google Scholar
  9. 9.
    Y. Yagodzinskyy, J. Pimenoff, O. Tarasenko, et al., Mater. Sci. Tech., 20, 925–929 (2004).CrossRefGoogle Scholar
  10. 10.
    O. A. Kaibyshev, Superplasticity of Commercial Alloys [in Russian], Metallurgiya, Moscow (1984).Google Scholar
  11. 11.
    A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci., 53, 893–979 (2008).CrossRefGoogle Scholar
  12. 12.
    R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881–981 (2006).CrossRefGoogle Scholar
  13. 13.
    I. Yu. Litovchenko, S. A. Akkuzin, N. A. Polekhina, et al., Russ. Phys. J., 59, No. 6, 782–787 (2016)CrossRefGoogle Scholar
  14. 14.
    S. A. Akkuzin, I.Yu. Litovchenko, N. A. Polekhina, et al., AIP Conf. Proc. 1783, 020001-1–020001-4 (2016).Google Scholar
  15. 15.
    A. Belyakov, T. Sakai, and H. Miura, ISIJ Int., 40, Supplement, S164–S168 (2000).CrossRefGoogle Scholar
  16. 16.
    Z. Yanushkevich, A.Lugovskaya, A.Belyakov, et al., Mater. Sci. Eng. A, 667, 279–285 (2016).CrossRefGoogle Scholar
  17. 17.
    V. A. Vinokurov, I. V. Ratochka, E. V. Naidenkin, et al., RF Patent No. 2388566, priority of 22.07.2008, Publ.: Bull. N13, 10.05.2010.Google Scholar
  18. 18.
    A. F. Padilha, R. L. Plaut, and P. R. Rios, ISIJ Int., 43, No. 2, 135–143 (2003).CrossRefGoogle Scholar
  19. 19.
    V. A. Teplov, L. G. Korshunov, V. A. Shabashov, et al., Fiz. Met. Metalloved., 66, Iss. 3, 563–571 (1988).Google Scholar
  20. 20.
    S. Scheriau, Z. Zhang, S. Kleber, et al., Mater. Sci. Eng. A, 528, 2776–2786 (2011).CrossRefGoogle Scholar
  21. 21.
    E. V. Kozlov, A. N. Zhdanov, N. A. Popova, et al., Mater. Sci. Eng. A, 387-389, 789–794 (2004).Google Scholar
  22. 22.
    B. P. Kashyap and K. Tangri, Scripta Metall. Mater., 24., No. 9, 1777–1782 (1990).CrossRefGoogle Scholar
  23. 23.
    Y. Nakao and H. Miura, Mater. Sci. Eng. A, 528, Iss. 3, 1310–1317 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Odnobokova, A. Belyakov, N. Enikeev, et al., Mater. Sci. Eng. A, 689, 370–383 (2017).CrossRefGoogle Scholar
  25. 25.
    Y. Mine, N. Horita, Z. Horita, et al., Int. J. Hydrogen Energy, 42, Iss. 22, 15415–15425 (2017).CrossRefGoogle Scholar
  26. 26.
    Z. Wang, T. A. Palmer, and A. M. Beese, Acta Mater., 110, 226–235 (2016).CrossRefGoogle Scholar
  27. 27.
    B. P. Kashyap, Acta Mater., 50, 2413–2427 (2002).CrossRefGoogle Scholar
  28. 28.
    I. Karaman, H. Sehitoglu, H. J. Maier, et al., Acta Mater., 49, 3919–3933 (2001).CrossRefGoogle Scholar
  29. 29.
    N. A. Narkevich, N. K. Galchenko, and Yu. P. Mironov, Zh. Fiz. Mezomekh., 7, No. 6, 79–83 (2004).Google Scholar
  30. 30.
    R. Zaripova, K. Fakhrutdinov, A. Zakirova, et al., in: Proc. Int. Symp. on Transformations During the Thermal/Mechanical Processing of Steel, 529–540, Vancouver (1995).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. G. Astafurova
    • 1
  • S. V. Astafurov
    • 1
  • I. V. Ratochka
    • 1
  • I. P. Mishin
    • 1
  • O. N. Lykova
    • 1
  • G. G. Maier
    • 1
  • E. V. Melnikov
    • 1
  • V. A. Moskvina
    • 1
    • 2
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations