Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1054–1061 | Cite as

Experimental and Theoretical Research into Dynamic Loading of Tungsten Porous Alloy with Reinforcing Agent

  • A. N. Ishchenko
  • R. N. Akinshin
  • S. A. Afanas’eva
  • N. N. Belov
  • I. L. Borisenkov
  • V. V. Burkin
  • A. N. Tabachenko
  • M. V. Khabibullin
  • N. T. Yugov
Article
  • 14 Downloads

The paper studies the behavior of ceramic porous tungsten alloy with reinforcing agents under the shock-wave loading conditions. Penetrating capacity of tungsten kinetic energy projectiles is calculated and experimentally investigated during their high-speed impacts on steel plates. It is shown that the increased penetration depth of tungsten projectiles exceeds that of the prototype with relevant weight and size, made of tungsten-nickel-iron cast alloy. A mathematical model is developed together with the design technique of the behavior of tungstennickel-iron-cobalt metal foams alloyed with boron carbide, tungsten titanium carbide and tungsten carbide during the high-speed impact interaction. The composite ceramic material is described here as a porous medium. The matrix of this medium is a homogeneous two-phase mixture of the tungsten-nickel-iron-cobalt system and reinforcing agents added in the required proportions.

Keywords

composite ceramic material reinforcing agent porosity experiment mathematical simulation high-speed impact interaction penetration depth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Ishchenko, S. A. Afanas'eva, N. N. Belov, et al., Tech. Phys. Let., 43, No. 9, 796–799 (2017).CrossRefGoogle Scholar
  2. 2.
    A. N. Ishchenko, A. N. Tabachenko, S. A. Afanas'eva, et al., Russ. Phys. J., 60, No. 10, 1811–1818 (2017).CrossRefGoogle Scholar
  3. 3.
    N. N. Belov, V. N. Demidov, L. V. Efremova, et al., Russ. Phys. J., 35, No. 8, 690–723 (1992).CrossRefGoogle Scholar
  4. 4.
    V. A. Burakov, V. V. Burkin, A. N. Ishchenko, et al., Experimental Ballistic Installation. RF Invention Patent No. 2591132 (June 20, 2016).Google Scholar
  5. 5.
    N. T. Yugov, N. N. Belov, and A. A. Yugov, Three-Dimensional Simulation of Nontypical Adiabatic Flows (RANET-3), Federal Agency for Intellectual Property, Patents and Trademarks. RF Certificate of State Registration of Software No. 2010611042. Moscow (2010).Google Scholar
  6. 6.
    M. V. Khabibullin and S. A. Afanas'eva, Calculation of Phenomena in Condensed Media Due to Intensive Pulse Impacts, in Axially Symmetrical Formulation. Federal Agency for Intellectual Property, Patents and Trademarks. RF Certificate of State Registration of Software No. 2012617301, Moscow (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. N. Ishchenko
    • 1
  • R. N. Akinshin
    • 3
  • S. A. Afanas’eva
    • 1
  • N. N. Belov
    • 1
  • I. L. Borisenkov
    • 3
  • V. V. Burkin
    • 1
  • A. N. Tabachenko
    • 2
  • M. V. Khabibullin
    • 1
  • N. T. Yugov
    • 1
  1. 1.Research Institute of Applied Mathematics and Mechanics at Tomsk State UniversityTomskRussia
  2. 2.Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  3. 3.The Defence Section of the RF Defence Ministry at Russian Academy of SciencesMoscowRussia

Personalised recommendations