Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1024–1028 | Cite as

Technological Control Over the Structure, Surface Morphology, and Properties of Electrolytic Copper

  • A. A. Vikarchuk
  • N. N. Gryzunova
  • A. M. Glezer
  • S. V. Stepanov
CONDENSED-STATE PHYSICS
  • 6 Downloads

Significant influence of the defective structure, specific faceting, and special features of the surface morphology of metallic materials, in particular electrolytic copper, on its catalytic activity in the reaction of decomposition of formic acid is experimentally shown. It is established that, in turn, the structure of the crystals formed during the metal electrocrystallization is affected by the technology of their production. To obtain copper crystals with a defective structure, a developed surface, and a specific facet consisting of certain catalytically active crystallographic planes, a mechanical activation of crystals growing during electrocrystallization of the metal was used.

Keywords

electrodeposition crystal growth microstructure catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Bukhtiyarov and M. G. Slinko, Adv. Chem., 70, 147–159 (2001).Google Scholar
  2. 2.
    M. M. Moiseev, V. T. Leonov, and I. D. Moiseeva, Izv. Tula State Univ. Nat. Sci., 1–2, 27–33 (2014).Google Scholar
  3. 3.
    M. Grunze, in: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 4, D. A. King and D. P. Woodruff, eds., Elsevier, Amsterdam (1982), p. 143.Google Scholar
  4. 4.
    I. V. Mishakov and V. A. Likholobov, Introduction to Catalysis: Textbook for University Students [in Russian], Publishing House of Novosibirsk State University, Novosibirsk (2015).Google Scholar
  5. 5.
    Sha Li, J. Scaranto, and M. Mavrikakis, Top Catal., 59, 1580–1588 (2016).CrossRefGoogle Scholar
  6. 6.
    A. A. Vikarchuk and A. P. Volenko, Phys. Solid State, 47, 352–356 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Vikarchuk, N. N. Gryzunova, M. V. Dorogov, et al., Mater. Sci., 9, 13–18 (2017).Google Scholar
  8. 8.
    N. N. Gryzunova, A. A. Vikarchuk, V. V. Bekin, et al., Bull. Rus. Acad. Sci.: Phys., 79, 1093–1097 (2015).Google Scholar
  9. 9.
    A. M. Gryzunov, Sci. Vect. Togliatti State Univ., 2 (36), 22–28 (2016).Google Scholar
  10. 10.
    N. N. Gryzunova, A. A. Vikarchuk, and M. N. Tyur’kov, Russ. Metall. (Metally), 10, 924–929 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    N. N. Gryzunova, Lett. Mater., 7 (1), No. 1, 39–43 (2017).CrossRefGoogle Scholar
  12. 12.
    V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals [in Russian], Nauka, Leningrad (1986).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Vikarchuk
    • 1
  • N. N. Gryzunova
    • 1
  • A. M. Glezer
    • 2
  • S. V. Stepanov
    • 3
  1. 1.Togliatti State UniversityTogliattiRussia
  2. 2.National University of Science and Technology “MISIS”MoscowRussia
  3. 3.Samara State Technical UniversitySamaraRussia

Personalised recommendations