Advertisement

Russian Physics Journal

, Volume 61, Issue 6, pp 1005–1023 | Cite as

Ion Implantation in Narrow-Gap CdxHg1–xTe Solid Solutions

  • N. Kh. Talipov
  • A. V. Voitsekhovskii
ANNIVERSARY JOURNAL
  • 3 Downloads

The results of experimental studies of processes of the radiation defect formation under ion implantation of narrow-gap CdxHg1-xTe solid solutions (MCT) are presented. The processes of formation of structural damages of the crystal and their effect on the electrophysical properties of ion-implanted bulk crystals and ptype heteroepitaxial structures grown by liquid-phase and molecular-beam epitaxy are considered. The results on the spatial distribution of implanted boron atoms and radiation donor centers in these materials are presented as a function of the mass, dose, and energy of ions being implanted and the implantation temperature. The processes and models of the formation of n+–n-–p-structures during boron ion implantation in p-type MCT and their experimental proof are considered.

Keywords

CdHgTe heteroepitaxial layers graded-gap structures radiation defects ion implantation n+n-p-structures photodiodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Lawson, S. Nielsen, E. H. Putley, and A. S. Young, J. Phys. Chem. Solids, 9, 325–329 (1959).ADSCrossRefGoogle Scholar
  2. 2.
    A. Rogalski, Rep. Prog. Phys., 68, No. 10, 2267–2336 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    A. Rogalski, Infrared Detectors, second edition, CRC Press Taylor & Francis Group, New York (2011).Google Scholar
  4. 4.
    V. P. Ponomarenko, Usp. Fiz. Nauk, 173, Vyp. 6, 649–665 (2003).CrossRefGoogle Scholar
  5. 5.
    O. Gravrand, J. Rothman, C. Cervera, et al., J. Electron. Mater., 45, 4532–4541 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    L. A. Bovina and V. I. Stafeev, Physics of A II B Vl Compounds, ed. by A. N. Georgobiani and M. K. Sheinkman [in Russian], Nauka, Moscow (1986).Google Scholar
  7. 7.
    N. S. Baryshev, Properties and Applications of Narrow-Gap Semiconductors [in Russian], UNIPRESS, Kazan (2000).Google Scholar
  8. 8.
    M. A. Kinch Fundamentals of Infrared Detector Materials, SPIE Press, Washington, USA (2007).CrossRefGoogle Scholar
  9. 9.
    J. Chu and A. Sher, Physics and Properties of Narrow Gap Semiconductors, Springer Science, N. Y. (2008).Google Scholar
  10. 10.
    P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications, John Wiley & Sons Ltd, Chichester, UK (2011).Google Scholar
  11. 11.
    F. A. Zaitov, F. K. Isaev, and A. V. Gorshkov, Defect Formation and Diffusion Processes in Some Semiconductor Solid Solutions [in Russian], Azerneshr, Baku (1984).Google Scholar
  12. 12.
    I. A. Denisov, Development of Technology for Growing Epitaxial Layers of Cadmium-Mercury-Tellurium by Liquid-Phase Epitaxy for Infrared Photodetectors [in Russian], Ph.D. Thesis, Moscow (2007).Google Scholar
  13. 13.
    Yu. G. Sidorov, S. A. Dvoretskii, V. S. Varavin, and N. N. Mikhailov, Matrix Photodetector Devices of Infrared Range, ed. by S. P. Sinitsa, Ch. 2, [in Russian], Nauka, Novosibirsk (2001).Google Scholar
  14. 14.
    Photodetectors Based on Cadmium-Mercury-Tellurium Epitaxial System, ed. by A. L. Aseev [in Russian], Izd. SO RAN, Novosibirsk (2012).Google Scholar
  15. 15.
    M. V. Yakushev, Heteroepitaxy of ZnTe, CdTe, and CdHgTe solid solutions on GaAs and Si substrates [in Russian], Doctoral Thesis, Novosibirsk (2011).Google Scholar
  16. 16.
    A. V. Voitsekhovskii, Yu. A. Denisov, A. P. Kokhanenko, et al., Avtometr., No. 4, 47–58 (1998).Google Scholar
  17. 17.
    V. V. Vasiliev, D. G. Esaev, A. F. Kravchenko, et al., Fiz. Tekh. Poluprovodn., 34, Vyp. 7, 877–880 (2000).Google Scholar
  18. 18.
    P. Capper, J. Cryst. Growth, 57, 280-299 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    M. Brown and W. Willoughby, J. Cryst. Growth, 59, 27–39 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    D. Maier, L. Ericson, and D. Davis, Ion Doping of Semiconductors [Russian translation], Mir, Moscow (1973).Google Scholar
  21. 21.
    Kh. Rissel and I. Ruge, Ion Implantation, ed. by M. I. Gusev [Russian translation], Nauka, Moscow (1983).Google Scholar
  22. 22.
    I. A. Abroyan, A. N. Andronov, and A. I. Titov, Physical Basis of Electron and Ion Technology [in Russian], Vyssh. Shkola, Moscow (1984).Google Scholar
  23. 23.
    Physical Processes in Irradiated Semiconductors, ed. by L. S. Smirnov [in Russian], Nauka, Novosibirsk (1977).Google Scholar
  24. 24.
    Problems of Radiation Technology of Semiconductors, ed. by L. S. Smirnov [in Russian], Nauka, Novosibirsk (1980).Google Scholar
  25. 25.
    L. S. Smirnov, Fiz. Tekh. Poluprovodn., 35, Vyp. 9, 1029–1031 (2001).Google Scholar
  26. 26.
    A. V. Vasiliev and A. I. Baranov, Defect-Impurity Reactions in Semiconductors [in Russian], Izd. SO RAN, Novosibirsk (2001).Google Scholar
  27. 27.
    L. Mollard, G. Destefanis, G. Bourgeois, et al., J. Electr. Mater., 40, 1830–1839 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    С. Е. Mallon, В. А. Green, R. E. Leadon, and J. А. Naber, IEEE Transact. Nucl. Sci., NS-22, No. 6, 228–2288 (1975).Google Scholar
  29. 29.
    A. C. Foyt, T. C. Harman, and J. P. Donnelly, Appl. Phys. Lett., 18, No. 8, 321–323 (1971).ADSCrossRefGoogle Scholar
  30. 30.
    A. V. Voitsekhovskii, V. O. Voloshin, M. B. Gol’man, and A. P. Kokhanenko, Radiation Physics of Narrow-Gap Semiconductors [in Russian], Gylym, Almaty (1998).Google Scholar
  31. 31.
    J. Marine and С. Motte, Appl. Phys. Lett., 23, No. 8, 450–452 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    G. Fiorito, G. Gasparrini, and F. Svelto, Infrared Phys., 15, 287-293 (1975).ADSCrossRefGoogle Scholar
  33. 33.
    E. Igras, J. Piotrowski, and I. Zimnoch-Higersberger, Electron Techn., 10, No. 4, 63–70 (1977).Google Scholar
  34. 34.
    М. Lanir, C. C. Wang, and A. H. B. Vanderwyck, Appl. Phys. Lett., 34, No. 1, 50–52 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    М. Chu, A. H. B. Vanderwyck, and D. T. Cheung, Appl. Phys. Lett., 37, No. 5, 486-488 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    P. G. Pitcher, P. L. F. Hemment, and Q. V. Davis, Electron. Lett., 18, No. 25, 1090-1092 (1982).CrossRefGoogle Scholar
  37. 37.
    R. E. DeWames, G. M. Williams, J. G. Pasko, and A. H. B. Vanderwyck, J. Cryst. Growth, 86, No. 1–4, 849–858 (1988).ADSCrossRefGoogle Scholar
  38. 38.
    J. H. Centeno, C. Gonzalez, J. Sangrador, and I. Rodriguez, J. Appl. Phys., 68, No. 12, 6149–6152 (1990).ADSCrossRefGoogle Scholar
  39. 39.
    G. L. Destefanis, R. Boch, and R. Roussille, J. Cryst. Growth, 59, 270–275 (1982).ADSCrossRefGoogle Scholar
  40. 40.
    G. Bahir, T. Bernstein, and R. Kalish, Radiation Effects, 48, 247–252 (1900).CrossRefGoogle Scholar
  41. 41.
    G. Bahir and R. Kalish, J. Appl. Phys., 54, No. 6, 3129–3140 (1983).ADSCrossRefGoogle Scholar
  42. 42.
    S. Y. Wu, W. J. Choyke, W. J. Takei, et al., J. Vac. Sci. Technol., 21, No. 1, 255–258 (1982).ADSCrossRefGoogle Scholar
  43. 43.
    G. L. Destefanis, Nucl. Instrum Methods, 209/210, 567–580 (1983).CrossRefGoogle Scholar
  44. 44.
    Yu. V. Lilenko, V. S. Kulikauskas, K. V. Shastov, and E. M. Kiryushkin, Poverkhn. Fiz., Khim., Mekh., No. 7, 142–144 (1988).Google Scholar
  45. 45.
    Yu. V. Lilenko, K. V. Shastov, A. S. Petrov, A. V. Voitsekhovskii, et al., Phys. Stat. Sol. (a), 113, No. 2, 285–294 (1989).ADSCrossRefGoogle Scholar
  46. 46.
    A. V. Voitsekhovskii and A. P. Kokhanenko, Russ. Phys. J., 41, No. 1, 101–116 (1998).CrossRefGoogle Scholar
  47. 47.
    A. V. Voitsekhovskii and A. P. Kokhanenko, Prikl. Fiz., No. 4, 38–44 (2000).Google Scholar
  48. 48.
    A. V. Voitsekhovskii, A. P. Kokhanenko, S. A. Shulga, and Roger Smith, Nucl. Instrum Methods Phys. Res. B, 215, Iss. 1–2, 109–121 (2004).Google Scholar
  49. 49.
    N. Kh. Talipov, Formation of n-Type Conductivity Layers under Radiation-Thermal Treatments of p-CdxHg1-xTe crystals [in Russian], Ph.D. Thesis, Novosibirsk (1994).Google Scholar
  50. 50.
    M. H. Aguirre and H. R. Canepa, Nucl. Instrum. Methods Phys. Res. B, 175–177, 274–279 (2001).ADSCrossRefGoogle Scholar
  51. 51.
    M. H. Aguirre, H. R. Canepa, and N. E. Walsoe de Reca, J. Appl. Phys., 92, No. 10, 5745–5748 (2002).ADSCrossRefGoogle Scholar
  52. 52.
    A. S. Petrov, V. S. Kulikauskas, Yu. V. Lilenko, et al., Sov. Phys. J., 31, No. 12, 1027–1032 (1988).Google Scholar
  53. 53.
    L. K. Magel and T. W. Sigmon J. Cryst. Growth, 86, 756–761 (1988).ADSCrossRefGoogle Scholar
  54. 54.
    L. O. Bubulac, W. E. Tennant, R. A. Riedel, and T. J. Magee, J. Vac. Sci. Technol., 21, Nо. 1, 251–254 (1982).Google Scholar
  55. 55.
    H. F. Schaake, J. Vac. Sci. Technol., A4, No. 4, 2174–2176 (1986).ADSCrossRefGoogle Scholar
  56. 56.
    G. L. Destefanis, J. Cryst. Growth, 89, 700–722 (1988).ADSCrossRefGoogle Scholar
  57. 57.
    V. Richter and R. Kalish, J. Appl. Phys., 67, No. 10, 6578–6580 (1900).ADSCrossRefGoogle Scholar
  58. 58.
    B. L. Williams, H. G. Robinson, and C. R. Helms, J. Electr. Mater., 26, No. 6, 600–605 (1997).ADSCrossRefGoogle Scholar
  59. 59.
    A. B. Smirnov, R. K. Savkina, R. S. Udovytska, et al., Nanoscale Res. Lett., 12, No. 320, 1–9 (2017).Google Scholar
  60. 60.
    N. Mainzer and E. Zolotoyabko, J. Electr. Mater., 29, No. 6, 792–797 (2000).ADSCrossRefGoogle Scholar
  61. 61.
    Anand Singh, A. K. Shukla, and R. Pal, Opt. Mater., 57, 34–38 (2016).ADSCrossRefGoogle Scholar
  62. 62.
    S. A. Dvoretskii, N. N. Mikhailov, V. G. Remesnik, and N. Kh. Talipov, Avtometr., No. 5, 73–77 (1998).Google Scholar
  63. 63.
    A. V. Voitsekhovskii, A. P. Kokhanenko, Yu. V. Lilenko, et al., Cryst. Res. Technol., 23, No. 2, 237–241 (1988).CrossRefGoogle Scholar
  64. 64.
    C. D. Smith, P. Rice-Evans, and N. Shaw, Phys. Rev. Lett., 72, No. 7, 1108–1111(1994).ADSCrossRefGoogle Scholar
  65. 65.
    A. V. Voitsekhovskii, A. G. Korotaev, and A. P. Kokhanenko, Russ. Phys. J., 38, No. 10, 1007–1022 (1995).CrossRefGoogle Scholar
  66. 66.
    A. Uedono, H. Ebe, M. Tanaka, et al., Jpn. J. Appl. Phys., 37, Part 1, No. 3A, 786–791 (1998).ADSCrossRefGoogle Scholar
  67. 67.
    A. Uedono, H. Ebe, M. Tanaka, et al., Jpn. J. Appl. Phys., 37, Part 1, No. 7, 3910–3914 (1998).ADSCrossRefGoogle Scholar
  68. 68.
    N. Kh. Talipov, Matrix Photodetector Devices of Infrared Range, ed. by S. P. Sinitsa [in Russian], Nauka, Novosibirsk (2001).Google Scholar
  69. 69.
    N. Kh. Talipov, Physico-Technological Bases of Doping of Narrow-Gap Semiconductor Compounds CdxHg1–xТе by Radiation-Thermal Effects [in Russian], Doctoral Thesis, Tomsk (2015).Google Scholar
  70. 70.
    N. Kh. Talipov, V. N. Ovsyuk, V. G. Remesnik, and V. V. Vasiliev, Mater. Sci. Eng. B, 44, 266–269 (1997).CrossRefGoogle Scholar
  71. 71.
    H. Ryssel, K. Muller, J. Biersack, et al., Phys. Stat. Sol. (a), 57, 619–624 (1980).ADSCrossRefGoogle Scholar
  72. 72.
    S. Margalit, Y. Nemirovsky, and I. Rotstein, J. Appl. Phys., 50, No. 10, 6386–6389 (1979).ADSCrossRefGoogle Scholar
  73. 73.
    L. O. Bubulac, W. E. Tennant, S. H. Shin, et al., Jpn. J. Appl. Phys., 19, 495–500 (1980).CrossRefGoogle Scholar
  74. 74.
    L. K. Vodopyanov, S. P. Kozyrev, and A. V. Spitsyn, Fiz. Tekh. Poluprovodn., 16, Vyp. 5, 782–788 (1982).Google Scholar
  75. 75.
    L. K. Vodopyanov, S. P. Kozyrev, and A. V. Spitsyn, Fiz. Tekh. Poluprovodn., 16, Vyp. 6, 972–977 (1982).Google Scholar
  76. 76.
    S. P. Kozyrev and L. K. Vodopyanov, Fiz. Tekh. Poluprovodn., 17, Vyp. 5, 893–899 (1983).Google Scholar
  77. 77.
    S. P. Kozyrev and L. K. Vodopyanov, Fiz. Tekh. Poluprovodn., 17, Vyp. 5, 900–903 (1983).Google Scholar
  78. 78.
    V. N. Brudnyi, S. N. Grinyaev, and V. E. Stepanov, Physica B, 212, 429–435 (1995).ADSCrossRefGoogle Scholar
  79. 79.
    Yu. V. Lilenko, K. V. Shastov, N. V. Kuznetsov, Fiz. Tekh. Poluprovodn., 20, Vyp. 10, 1907–1910 (1986).Google Scholar
  80. 80.
    G. L. Destefanis, R. Boch, and R. Roussille, J. Cryst. Growth, 59, 270–275 (1982).ADSCrossRefGoogle Scholar
  81. 81.
    R. Kumar, M. В. Dutt, R. Nath, et al., J. Appl. Phys., 68, No. 11, 5564–5566 (1990).ADSCrossRefGoogle Scholar
  82. 82.
    A. V. Voitsekhovskii and N. Kh. Talipov, Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh., No. 4, 32–41 (2011).Google Scholar
  83. 83.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Prikl. Fiz., No. 5, 93–95 (2003).Google Scholar
  84. 84.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh., No. 2, 60–65 (2004).Google Scholar
  85. 85.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Prikl. Fiz., No. 3, 83–88 (2005).Google Scholar
  86. 86.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Proceed. Intern. Sci.-Tech. Conf. "High Technologies in the Industry of Russia (Materials and Devices of Functional Electronics and Photonics) [in Russian], JSC TsNITI "Tekhnomash", Moscow (2005).Google Scholar
  87. 87.
    D. V. Grigorèv, Radiation Defect Formation during Ion Implantation in the CdxHg1–xTe Graded-Gap Semiconductor Structures Grown by Molecular-Beam Epitaxy [in Russian], Ph.D. Thesis, Tomsk (2005).Google Scholar
  88. 88.
    A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Russ. Phys. J., 49, No. 9, 929–933 (2006).CrossRefGoogle Scholar
  89. 89.
    A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 9, Appendix, 142–145 (2006).Google Scholar
  90. 90.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 10/2, 389–391 (2006).Google Scholar
  91. 91.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. P. Kokhanenko, et al., Izv. Vyssh. Uchebn. Zaved. Fiz., 49, No. 10/2, 392–394 (2006).Google Scholar
  92. 92.
    A. V. Voitsekhovskii, D. V. Grigorèv, A. G. Korotaev, et al., Izv. Vyssh. Uchebn. Zaved. Mater. Elektron. Tekh., No. 2, 35–40 (2007).Google Scholar
  93. 93.
    A. V. Voitsekhovskii, A. G. Korotaev, A. P. Kokhanenko, et al., Prikl. Fiz., No. 6, 119–123 (2007).Google Scholar
  94. 94.
    A. V. Voitsekhovskii, D. V. Grigorèv, and N. Kh. Talipov, Russ. Phys. J., 51, No. 10, 1001–1015 (2008).CrossRefGoogle Scholar
  95. 95.
    N. Kh. Talipov, A. V. Voitsekhovskii, and D. V. Grigorèv, Russ. Phys. J., 57, No. 3, 345–358 (2014).CrossRefGoogle Scholar
  96. 96.
    L. O. Bubulac, W. E. Tennant, D. S. Lo, et al., J. Vac. Sci. Technol., A5, No. 5, 3166–3170 (1987).ADSCrossRefGoogle Scholar
  97. 97.
    G. A. Umana-Membreno, H. Kala, J. Antoszewski, et al., J. Electr. Mater., 42, 3108–3113 (2013).ADSCrossRefGoogle Scholar
  98. 98.
    A. V. Dvurechenskii, V. G. Remesnik, I. A. Ryazantsev, and N. Kh. Talipov, Fiz. Tekh. Poluprovodn., 27, Vyp. 1, 168–171 (1993).Google Scholar
  99. 99.
    L. O. Bubulac and W. E. Tennant, Appl. Phys. Lett., 51, No. 5, 355–357 (1987).ADSCrossRefGoogle Scholar
  100. 100.
    L. O. Bubulac, J. Cryst. Growth, 86, 723–734 (1988).ADSCrossRefGoogle Scholar
  101. 101.
    V. N. Ovsyuk and N. Kh. Talipov, Prikl. Fiz., No. 5, 87–92 (2003).Google Scholar
  102. 102.
    A. M. Mishchenko, N. Kh. Talipov, and V. V. Shashkin, Patent of the Russian Federation No. 2023326 (1994).Google Scholar
  103. 103.
    A. V. Voitsekhovskii and N. Kh. Talipov, Izv. Vyssh. Uchebn. Zaved. Fiz., 58, No. 8/2, 267–270 (2015).Google Scholar
  104. 104.
    N. Kh. Talipov, V. P. Popov, V. G. Remesnik, et al., Fiz. Tekh. Poluprovodn., 26, Vyp. 2, 310–317 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Peter the Great Military Academy of Strategic Missile ForcesBalashikhaRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations