Advertisement

Russian Physics Journal

, Volume 61, Issue 2, pp 223–231 | Cite as

Capture and Emission of Charge Carriers by Quantum Well

  • V. N. Davydov
  • O. A. Karankevich
Article
  • 25 Downloads

The interaction of electrons from the conduction band of the barrier layer of a LED heterostructure with the quantum well size-quantization level described by the capture time and emission time of charge carriers is considered. Relaxation of an excess energy upon capture and emission of charge carriers occurs as a result of their collisions with phonons of the quantum well substance and the “barrier layer-quantum well” interface. Analytical expressions are obtained for the interaction times, taking into account the depth of the sizequantization level, involved in the interaction with electrons, and the width of the well. Numerical estimates show that in real conditions, the capture time is shorter than the emission time, and this difference increases with increasing depth of the level. At shallow depths, the capture and emission times are comparable.

Keywords

quantum well capture time emission time of charge carriers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 45, Vyp. 11, 1553–1559 (2011).Google Scholar
  2. 2.
    Z. N. Sokolova, I. S. Tarasov, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 46, Vyp. 11, 1067–1073 (2012).Google Scholar
  3. 3.
    Z. N. Sokolova, I. S. Tarasov, N. A. Pikhtin, and L. V. Asryan, Fiz. Tekh. Poluprovodn., 49, Vyp. 11, 1553–1557 (2015).Google Scholar
  4. 4.
    Z. N. Sokolova, K. V. Bakhvalov, A. V. Lyutetskii, et. al., Fiz. Tekh. Poluprovodn., 50, Vyp. 5, 679–682 (2016).Google Scholar
  5. 5.
    A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett., 79, 3723 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    M. H. Kim, M. F. Schubert, Q. Dai, et al., Appl. Phys. Lett., 91, 183–507 (2007).Google Scholar
  7. 7.
    L. A. Pope, P. M. Smowton, P. Blood, et al., Appl. Phys. Lett., 83, 2755 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    D. Yan, H. Lu, D. Chen, et al., Appl. Phys. Lett., 95, 083 (2010).Google Scholar
  9. 9.
    N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, et al., Fiz. Tekh. Poluprovodn., 41, No. 1, 88–95 (2007).Google Scholar
  10. 10.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, et al., Fiz. Tekh. Poluprovodn., 46, Vyp. 8, 1054–1062 (2012).Google Scholar
  11. 11.
    D. Zhu, J. Xu, A. N. Noemaun, et al., Appl. Phys. Lett., 94, 081–113 (2009).Google Scholar
  12. 12.
    N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, et al., Fiz. Tekh. Poluprovodn., 47, Vyp. 1, 129–136 (2013).Google Scholar
  13. 13.
    V. N. Abakumov V. I. Perel’, and I. N. Yassievich, Zh. Exp. Teor. Fiz., 72, 674–779 (1977).Google Scholar
  14. 14.
    V. Ya. Aleshkin and L. V. Gavrilrnko Fiz. Tekh. Poluprovodn., 51, Vyp. 11, 1498–1502 (2017).Google Scholar
  15. 15.
    A. Milns, Impurities with Deep Levels in Semiconductors, ed. M. K. Sheikman [Russian translation], Mir, Moscow (1977).Google Scholar
  16. 16.
    E. F. Schubert, Light-Emitted Diodes, Cambridge (2006).Google Scholar
  17. 17.
    J. Vungaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys., 89, Nо. 11, 5815–5875 (2001).Google Scholar
  18. 18.
    V. I. Zubkov, Fiz. Tekh. Poluprovodn., 40, Vyp. 10, 1236–1241 (2006).Google Scholar
  19. 19.
    V. N. Davydov and D. A. Novikov, Dokl. TUSUR, Vyp. 1 (35), 64–73 (2015).Google Scholar
  20. 20.
    V. N. Davydov and A. N. Morgunov, Russ. Phys. J., 58, No. 11, 1619–1626 (2015).CrossRefGoogle Scholar
  21. 21.
    V. N. Davydov and D. A. Novikov, Russ. Phys. J., 58, No. 7, 987–995 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations