Russian Physics Journal

, Volume 61, Issue 1, pp 14–18 | Cite as

Structural-Phase States of Fe–Cu and Fe–Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

  • M. I. Lerner
  • O. V. Bakina
  • A. V. Pervikov
  • E. A. Glazkova
  • A. S. Lozhkomoev
  • A. B. Vorozhtsov

X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe–Cu and Fe–Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.


electric explosion of wires bimetallic nanoparticles Janus particles immiscible metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. A. Kotov, Nanotechnologies in Russia, 4, Issue 7–8, 415–424 (2009).Google Scholar
  2. 2.
    A. V. Pervikov, M. I. Lerner, V. V. Domashenko, Izv. Vyssh. Uchebn. Zaved., Fiz. [in Russian], 55, Issue 6/2, 214–217 (2012).Google Scholar
  3. 3.
    M. I. Lerner, E. A. Glazkova, V. V. Domashenko, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. [in Russian], 55, Issue 6/2, 209–213 (2012).Google Scholar
  4. 4.
    M. I. Lerner, E. A. Glazkova, V. V. Domashenko, et al., Nanotekhnika [in Russian], Issue 2, 23–26 (2013).Google Scholar
  5. 5.
    Prem Ranjan, Raj Kamal Singh, H. Suematsu, et al., Environment. Chem. Eng., 5, Issue 2, 1676–1684 (2017).Google Scholar
  6. 6.
    Chucai Peng, Jinxiang Wang, Nan Zhou, and Guilei Sun, Current Appl. Phys., 16, Issue 3, 284–287 (2016).Google Scholar
  7. 7.
    Kyungsun Song, Wonbaek Kim, Chang-Yul Suh, et al., Powder Technol., 246, 572–574 (2013).Google Scholar
  8. 8.
    Naoyuki Wada, Kazunori Akiyoshi, Kohji Morita, and Kazuyuki Hokamoto, Ceram. Int., 39, Issue 7, 7927–793 (2013).Google Scholar
  9. 9.
    Eunju Park, Hyung Wook Park, and Jinae Lee, Colloids Surf. A: Physicochem. Eng. Aspects, 482, 710–717 (2015).Google Scholar
  10. 10.
    Sugunakary Redd R., Kamaraj M., Kamachi Mudali U., et al., Ceram. Int., 38, Issue 7, 5507–5512 (2012).Google Scholar
  11. 11.
    M. I. Lerner, A. V. Pervikov, E. A. Glazkova, et al., Powder Technol., 288, 371–378 (2016).CrossRefGoogle Scholar
  12. 12.
    V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, et al., Plasma Phys. Rep., 41, Issue 8, 617–636 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    G. S. Sarkisov, P. V. Sasorov, K. W. Struve, and D. H. McDaniel, J. Appl. Phys., 96, Issue 3, 1674–1686.Google Scholar
  14. 14.
    T. K. Sindhu, R. Sarathi, and S. R. Chakravarthy, Nanotechnology, 19, 025703 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    Hongwei Wu, Qiyan Feng, Hong Yang, et al., Colloids Surf. A: Physicochem. Eng. Aspects, 517, 63–71 (2017).Google Scholar
  16. 16.
    Z. Marková, K. M. Šišková, J. Filip, et al., Environ. Sci. Technol., 47, Issue 10, 5285–5293 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    I. Gotman, S. K. Swain, A. Sharipova, and E. Y. Gutmanas, AIP Conf. Proc., 1783–020062 (2016).Google Scholar
  18. 18.
    Xiaowa Nie, Haozhi Wang, Michael J. Janik, et al., J. Phys. Chem. C., 120, Issue 17, 9364–9373 (2016).Google Scholar
  19. 19.
    Gyutae Nam, Joohyuk Park, Min Choi, et al., ACS Nano, 9, Issue 6, 6493– 6501 (2015).Google Scholar
  20. 20.
    T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, Russ. Chem. Rev., 70, Issue 1, 45–63 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. I. Lerner
    • 1
    • 2
  • O. V. Bakina
    • 1
  • A. V. Pervikov
    • 1
    • 2
  • E. A. Glazkova
    • 1
  • A. S. Lozhkomoev
    • 1
  • A. B. Vorozhtsov
    • 3
    • 4
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia
  4. 4.Institute for Problems of Chemical and Energy Technologies of the Siberian Branch of the Russian Academy of SciencesBiyskRussia

Personalised recommendations