Diurnal Dynamics of Standard Deviations of Three Wind Velocity Components in the Atmospheric Boundary Layer

  • L. G. Shamanaeva
  • N. P. Krasnenko
  • O. F. Kapegesheva
OPTICS AND SPECTROSCOPY

Diurnal dynamics of the standard deviation (SD) of three wind velocity components measured with a minisodar in the atmospheric boundary layer is analyzed. Statistical analysis of measurement data demonstrates that the SDs for x- and y-components σx and σy lie in the range from 0.2 to 4 m/s, and σz = 0.1–1.2 m/s. The increase of σx and σy with the altitude is described sufficiently well by a power law with exponent changing from 0.22 to 1.3 depending on time of day, and σz increases by a linear law. Approximation constants are determined and errors of their application are estimated. It is found that the maximal diurnal spread of SD values is 56% for σx and σy and 94% for σz. The established physical laws and the obtained approximation constants allow the diurnal dynamics of the SDs for three wind velocity components in the atmospheric boundary layer to be determined and can be recommended for application in models of the atmospheric boundary layer.

Keywords

atmospheric boundary layer acoustic sounding sodar wind velocity components standard deviations diurnal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. Byzova, V. I. Ivanov, and E. K. Garger, Turbulence in the Atmospheric Boundary Layer [in Russian], Gidrometeoizdat, Leningrad (1989).Google Scholar
  2. 2.
    Atmosphere: A Handbook [in Russian], Gidrometeoizdat, Leningrad (1991).Google Scholar
  3. 3.
    P. D. Astapenko, A. M. Baranov, and I. M. Shvarev, Aviation Meteorology [in Russian], Transport, Moscow (1985).Google Scholar
  4. 4.
    R. L. Coulter and M. A. Kallistratova, Meteorol. Atm. Phys., 85, Nos. 1–2, 3–19 (2004).Google Scholar
  5. 5.
    R. L. Coulter, in: Proc. 11th ISARS, Rome (2002), pp. 321–327.Google Scholar
  6. 6.
    S. Bradley, Atmospheric Acoustic Remote Sensing: Principles and Applications, CRC Press Taylor & Francis Group, Boca; London; New York (2007).CrossRefGoogle Scholar
  7. 7.
    S. Emeis, K. Baumann-Stanzer, M. Piringer, et al., Meteorol. Z., 16, No. 4, 393–406 (2007).CrossRefGoogle Scholar
  8. 8.
    M. A. Lokoshchenko, V. G. Perepelkin, and N. V. Semenova, Meteorol. Z., 16, No. 4, 407–417 (2007).CrossRefGoogle Scholar
  9. 9.
    M. A. Lokoshchenko, V. G. Perepelkin, N. F. Elanskii, and I. A. Korneva, in: Proc. 15th ISARS, Paris (2010), Poster PMEA/14 (4 pp.).Google Scholar
  10. 10.
    O. F. Kapegesheva, N. P. Krasnenko, M. V. Tarasenkov, and L. G. Shamanaeva, Proc. SPIE, 9680, 96804E-1–96804E-4 (2015); DOI: 10/1117/12.2205801. 11. http://minisodar.org.Google Scholar
  11. 12.
    N. P. Krasnenko, M. V. Tarasenkov, and L. G. Shamanaeva, Russ. Phys. J., 57, No. 11, 1539–1546 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. G. Shamanaeva
    • 1
    • 2
  • N. P. Krasnenko
    • 3
    • 4
  • O. F. Kapegesheva
    • 2
  1. 1.V. E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  4. 4.Tomsk State University of Control Systems and Radio ElectronicsTomskRussia

Personalised recommendations