Russian Physics Journal

, Volume 60, Issue 12, pp 2136–2143 | Cite as

First-Principles and Thermodynamic Simulation of Elastiс Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

  • M. S. RakitinEmail author
  • A. A. Mirzoev
  • D. A. Mirzaev

Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe–H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.


first-principle calculation dissolution energy stress effect Fe–H flake phase transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Shtremel’, Strength of Alloys. Pt. II: Lattice Defects [in Russian], MISiS, Мoscow (1997).Google Scholar
  2. 2.
    G. Alefeld and J. Völkl (Eds.), Hydrogen in Metals [Russian translation], Mir, Мoscow (1981).Google Scholar
  3. 3.
    Y. Fukai, The Metal-Hydrogen System. Heidelberg, Springer Verlag, Berlin (2005).Google Scholar
  4. 4.
    P. V. Gel'd and R. A. Ryabov, Hydrogen in Metals and Alloys [in Russian], Metallurgiya, Мoscow (1974).Google Scholar
  5. 5.
    D. A. Mirzaev, A. D. Shaburov, and A. O. Chernyavskii, Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Ser. Metallurgiya, 14, No. 3, 40–45 (2014).Google Scholar
  6. 6.
    K. Schwarz, P. Blaha, and G. K.H. Madsen, Comput. Phys. Commun., 147, 71–76 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    C. Elsasser, J. Zhu, S. G. Louie, et al. J. Phys.: Cond. Matter, 10, 5081–5111 (1998).ADSGoogle Scholar
  9. 9.
    D. E. Jiang and E. A. Carter, Phys. Rev. В, 70, 064102 (2004).CrossRefGoogle Scholar
  10. 10.
    M. A. Shtremel’, Strength of Alloys. Pt. II: Lattice Defects [in Russian], MISiS, Мoscow (1999)Google Scholar
  11. 11.
    J. C. M. Li, R. A. Oriani, and L. S. Darken, Z. Phys. Chem. Neue Folge, No. 49, 271–290 (5cy).Google Scholar
  12. 12.
    D. A. Mirzaev, A. A. Mirzoev, I. V. Kashukov, and K. Yu. Okishev, Phys. Met. Metallogr., 108, No. 5, 496-503 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Rakitin
    • 1
    Email author
  • A. A. Mirzoev
    • 1
  • D. A. Mirzaev
    • 1
  1. 1.National Research South Ural State UniversityChelyabinskRussia

Personalised recommendations