Advertisement

Russian Physics Journal

, Volume 60, Issue 11, pp 2025–2031 | Cite as

Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al–Ti–B/B4c Systems Used for Aluminum Alloy Modification

  • I. A. Zhukov
  • V. V. Promakhov
  • A. E. Matveev
  • V. V. Platov
  • A. P. Khrustalev
  • Ya. A. Dubkova
  • S. A. Vorozhtsov
  • A. I. Potekaev
Article
  • 23 Downloads

The principles of formation of structure and properties of materials produced by self-propagating hightemperature synthesis (SHS) from the Al–Ti–B/B4C powder systems are identified. It is shown that the SHSmaterials produced from the Al–Ti–B powder systems consist of a TiAl intermetallic matrix with inclusions of titanium diboride particles. It is found out that an introduction of 1 wt.% of TiB2 particles into the melt of the AD35 aluminum alloy allows reducing the grain size from 620 to 220 μm and gives rise to an increase in the ultimate tensile strength of as-cast specimens from 100 to 145 MPa and in the plasticity from 7 to 9%.

Keywords

master alloy Al–Ti system aluminum alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Vorozhtsov, A. Vorozhtsov, O. Kudryashova, et al., Powd. Tech., 313, 251–259 (2017).CrossRefGoogle Scholar
  2. 2.
    S. Vorozhtsov, V. Kolarik, V. Promakhov, et al., JOM, 68(5), 1312–1316 (2016).CrossRefGoogle Scholar
  3. 3.
    I. A. Zhukov, G. V. Garkushin, S. A. Vorozhtsov, et al., Russ. Phys. J., 58, No. 9, 1358–1361 (2016).CrossRefGoogle Scholar
  4. 4.
    S. N. Kulkov, S. A. Vorozhtsov, V. F. Komarov, and V. V. Promakhov, et al., Russ. Phys. J., 56, No. 1, 85–89 (2013).CrossRefGoogle Scholar
  5. 5.
    J. E. Hatch (Ed.), Aluminum Properties and Physical Metallurgy, ASM, Metals Park, Ohio (1984).Google Scholar
  6. 6.
    G. V. Sakovich, S. A. Vorozhtsov, A. B. Vorozhtsov, et al., Russ. Phys. J., 59, No. 3, 435–441 (2016).CrossRefGoogle Scholar
  7. 7.
    S. A. Vorozhtsov, A. P. Khrustalev, D. G. Eskin, et al., Russ. Phys. J., 57, No. 11, 1485–1490 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Vorozhtsov, I. Zhukov, A. Vorozhtsov, et al., Adv. Mater. Sci. Eng., 2015, 1–6 (2015).CrossRefGoogle Scholar
  9. 9.
    S. Vorozhtsov, I. Zhukov, V. Promakhov, et al. JOM, 68. No. 12, 1312–1316 (2016).CrossRefGoogle Scholar
  10. 10.
    Мержанов A. G. Merzhanov, Combustion and Material Synthesis Processes [in Russian], ISMAN, Chernogolovka (1999).Google Scholar
  11. 11.
    I. A. Zhukov, M. Kh. Ziatdinov, A. B. Vorozhtsov, et al., Russ. Phys. J., 59, No. 8, 1324–1326 (2016).CrossRefGoogle Scholar
  12. 12.
    W. Yoshida, M. Kobashi, and N. Kanetake, Mater. Trans., 48, No. 9, 2374–2377 (2007).CrossRefGoogle Scholar
  13. 13.
    Трусов B. G. Trusov, in: Proc. XIV Int. Conf. Chem. Thermodyn., 483, SPb. (2002).Google Scholar
  14. 14.
    E. O. Hall, J. Mechan. Phys. Solid., 1, No. 4, 227–233 (1953).ADSCrossRefGoogle Scholar
  15. 15.
    A. P. Khrustalev, S. A. Vorozhtsov, I. A. Zhukov, et al., Russ. Phys. J., 59, No. 12, 2183–2185 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Zhukov
    • 1
    • 2
  • V. V. Promakhov
    • 1
    • 2
  • A. E. Matveev
    • 1
  • V. V. Platov
    • 1
  • A. P. Khrustalev
    • 1
  • Ya. A. Dubkova
    • 1
  • S. A. Vorozhtsov
    • 1
  • A. I. Potekaev
    • 1
    • 3
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of SciencesBiyskRussia
  3. 3.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia

Personalised recommendations