Russian Physics Journal

, Volume 60, Issue 3, pp 477–484 | Cite as

Temperature Sensitivity of Water-Soluble CdTe and CdSe/ZnS Quantum Dots Incorporated into Biopolymer Submicron Particles

  • N. V. Slyusarenko
  • M. A. Gerasimova
  • V. V. Slabko
  • E. A. Slyusareva
OPTICS AND SPECTROSCOPY
  • 38 Downloads

Polymer particles with sizes 0.3–0.4 μm are synthesized based on chitosan and chondroitin sulfate with incorporated CdTe (core) and CdSe/ZnS (core–shell) quantum dots. Their morphological and spectral properties are investigated by the methods of dynamic scattering, electron microscopy, and absorption and luminescence spectroscopy at temperatures from 10 to 80°С. Spectral effects associated with a change in temperature (a red shift and a decrease in the amplitude of the photoluminescence spectrum) can be explained by the temperature expansion of the quantum dots and activation of surface traps. It is shown that the temperature sensitivity of spectra of the quantum dots incorporated into the biopolymer particles is not less than in water. To develop an optical temperature sensor, the core quantum dots are more preferable than the core–shell quantum dots.

Keywords

quantum dots polymer particles absorption photoluminescence temperature sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Lesnyak, N. Gaponik, and A. Eychmüller, Chem. Soc. Rev., 42, 2905–2929 (2013).CrossRefGoogle Scholar
  2. 2.
    G. W. Walker, V. C. Sundar, C. M. Rudzinski, et al., Appl. Phys. Lett., 83, 3555–3557 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Yang, X. Tan, X. Zhang, et al., Spectrochim. Acta., 151, 591–597 (2015).CrossRefGoogle Scholar
  4. 4.
    A. S. Susha, A. M. Javier, W. J. Parak, et al., Colloid Surf. A, 281, 40–43 (2006).CrossRefGoogle Scholar
  5. 5.
    L. Shen, J. Funct. Biomater., 2, 355–372 (2011).CrossRefGoogle Scholar
  6. 6.
    E. Slyusareva, M. Gerasimova, V. Slabko, et al., Chem. Phys. Chem., 16, 3997–4003 (2015).CrossRefGoogle Scholar
  7. 7.
    W. W. Yu, L. Qu, W. Guo, et al., Chem. Mater., 15, 2854–2860 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Boddohi, N. Moore, P. A. Johnson, et al., Biomacromolecules, 10, 1402–1409 (2009).CrossRefGoogle Scholar
  9. 9.
    H. Dou, W. Yang, K. Tao, et al., Langmuir, 26, 5022–5027 (2010).CrossRefGoogle Scholar
  10. 10.
    H. C. Gardner, D. E. Gallardo, C. Bertoni, et al., Proc. SPIE, 6195, 61950N (2006).ADSCrossRefGoogle Scholar
  11. 11.
    J. H. Wang, H. L. Zhang, Y. Q. Li, et al., J. Nanopart. Res., 12, 1687–1695 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    J. H. Wang, H. Q. Wang, Y. Q. Li, et al., Talanta, 74, 724–729 (2008).CrossRefGoogle Scholar
  13. 13.
    D. Zhou, M. Lin, X. Liu, et al., ACS Nano, 7, 2273–2283 (2013).CrossRefGoogle Scholar
  14. 14.
    V. Biju, A. Sonoda, H. Yokoyama, et al., J. Phys. Chem., B109, 13899–13905 (2005).CrossRefGoogle Scholar
  15. 15.
    D. Mutavdzic, J. Xu, G. Thakur, et al., Analyst, 136, 2391–2396 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    Z. Zhao, Y. Zhou, F. Bian, et al., J. Nano Res., 35, 11–20 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    A. J. Strauss, Rev. Phys. Appl., 12, 167–184 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • N. V. Slyusarenko
    • 1
  • M. A. Gerasimova
    • 1
  • V. V. Slabko
    • 1
  • E. A. Slyusareva
    • 1
  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations