Advertisement

Russian Physics Journal

, Volume 59, Issue 12, pp 2041–2047 | Cite as

On the Equivalence of Two Approaches to the Construction of Interactions in Higher-Derivative Theories

  • D. S. KaparulinEmail author
  • S. L. Lyakhovich
ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY

It is shown that two previously developed approaches to the construction of nonlinear interactions in higher-derivative theories (Eur. Phys. J., C74 (2014); J. Phys., A49 (2016)) lead to equivalent nonlinear models. A substitution of variables that is invertible on the mass shell is presented, which maps the classical trajectories of one of the models onto the trajectories of the other model.

Keywords

higher-derivative theories stability theories of derivative type proper deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Z. Simon, Phys. Rev., D41, 3720–3733 (1990).ADSGoogle Scholar
  2. 2.
    T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys., 82, No. 1, 451–497 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    D. S. Kaparulin, S. L. Lyakhovich, and A. A. Sharapov, Eur. Phys. J., C74, No. 3072 (2014).Google Scholar
  4. 4.
    A. De Felice and S. Tsujikawa, Living Rev. Rel., 13, 3 (2010).CrossRefGoogle Scholar
  5. 5.
    D. S. Kaparulin, I. Yu. Karataeva, and S. L. Lyakhovich, Eur. Phys. J., C75, No. 0551 (2015).Google Scholar
  6. 6.
    D. S. Kaparulin and S. L. Lyakhovich, Russ. Phys. J., 57, No. 11, 91–95 (2014).Google Scholar
  7. 7.
    D. S. Kaparulin, I. Yu. Karataeva, and S. L. Lyakhovich, Russ. Phys. J., 59, No. 11, 172–177 (2016).Google Scholar
  8. 8.
    I. Masterov, Nucl. Phys., B902, 95–114 (2016).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    I. Masterov, Nucl. Phys., B907, 495–508 (2016).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    D. S. Kaparulin, S. L. Lyakhovich, and A. A. Sharapov, J. Phys., A49, No. 155204 (2016).Google Scholar
  11. 11.
    A. Pais and G. E. Uhlenbeck, Phys. Rev., 79, No. 1, 145–165 (1950).ADSCrossRefGoogle Scholar
  12. 12.
    B. Podolsky, Phys. Rev., 62, No. 1–2, 68–71 (1942).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Lu and C. N. Pope, Phys. Rev. Lett., 106, No. 181302 (2011).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations