Advertisement

Russian Physics Journal

, Volume 59, Issue 9, pp 1454–1459 | Cite as

The Possibility of Using Composite Nanoparticles in High Energy Materials

  • M. V. Komarova
  • A. B. Vorozhtsov
  • A. G. Wakutin
Article
  • 37 Downloads

The effect of nanopowders on the burning rate varying with the metal content in mixtures of different high energy composition is investigated. Experiments were performed on compositions based on an active tetrazol binder and electroexplosive nanoaluminum with addition of copper, nickel, or iron nanopowders, and of Al–Ni, Al–Cu, or Al–Fe composite nanoparticles produced by electrical explosion of heterogeneous metal wires. The results obtained from thermogravimetric analysis of model metal-based compositions are presented. The advantages of the composite nanoparticles and the possibility of using them in high energy materials are discussed.

Keywords

metal nanopowders high energy materials burning rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. De. Luca, L. Galfetti, and L. Severini, Propellants, Explosives, Pyrotechnics, 30, No. 6, 680-692 (2005).Google Scholar
  2. 2.
    G. V. Sakovich, V. A. Arkhipov, A. B. Vorozhtsov, et al., Nanotechnol. Russia, 5, 91, doi:  10.1134/S1995078010010106 (2010).CrossRefGoogle Scholar
  3. 3.
    S. G. Fedorov, Sh. L. Guseinov, and P. A. Storozhenko, Nanotechnol. Russia, 5, No. 9, 27-39 (2010).Google Scholar
  4. 4.
    M. V. Komarova and A. B. Vorozhtsov, Russ. Phys. J., 57, No. 7, 945-949 (2014).CrossRefGoogle Scholar
  5. 5.
    P. Brousseu and C. J. Anderson, Propellants, Explosives, Pyrotechnics, 27, No. 5, 300-306 (2002).CrossRefGoogle Scholar
  6. 6.
    M. M. Mench, C. L. Yeh, and K. K. Kuo, in: Proc 29th Int. Annual Conf. ICT, Karlsruhe, Germany, (1998), pp. 30-1–30-7.Google Scholar
  7. 7.
    V. F. Komarov, G. V. Sakovich, A. B. Vorozhtsov, et al., in: Proc. 40th Int. Annual Conf. ICT, Karlsruhe Germany, (2009), p. 108.Google Scholar
  8. 8.
    A. Gromov, A. Vorozhtsov, Yu. Strokova, and U. Teipel, Propellants, Explosives, Pyrotechnics, 34, No. 6, 506–512 (20099.Google Scholar
  9. 9.
    V. F. Komarov, M. V. Komarova, A. B. Vorozhtsov, et al., Russ. Phys. J., 56, No. 4, 365-369 (2013).CrossRefGoogle Scholar
  10. 10.
    V. F. Komarov, A. B. Vorozhtsov, G. V. Sakovich, et al., in: Proc. 8-ISICP, Cape Town, South Africa, (2009), pp. 62–66.Google Scholar
  11. 11.
    A. Vorozhtsov, V. Komarov, M. Komarova, et al. in: Proc. 9th Int. Symp. Special Topics in Chemical Propulsion (9-ISICP), Québec, Canada, (2012), p. 161.Google Scholar
  12. 12.
    N. A. Yavorovskii, Izv.Vyssh. Uchebn. Zaved., 39, No. 4, Suppl., 114-135 (1996).Google Scholar
  13. 13.
    O. B. Nazarenko, Electroexplosive Nanopowders: Production, Properties, Application [in Russian], Tomsk University Publ., Tomsk, (2005).Google Scholar
  14. 14.
    A. P. Savitskii, Liquid Phase Sintering of Systems with Interacting Components [in Russian], Nauka, Novosibirsk (1991).Google Scholar
  15. 15.
    Ya. M. Paushkin, Liquid and Solid Chemical Rocket Fuels [in Russian], Nauka, Moscow, (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. V. Komarova
    • 1
  • A. B. Vorozhtsov
    • 1
    • 2
  • A. G. Wakutin
    • 1
  1. 1.Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of SciencesBiyskRussia
  2. 2.National Research Tomsk- State UniversityTomskRussia

Personalised recommendations