Advertisement

Russian Physics Journal

, Volume 59, Issue 5, pp 633–639 | Cite as

Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties

  • V. A. SarokaEmail author
  • K. G. Batrakov
Article

The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.

Keywords

graphene nanoribbons superlattices electronic properties band gap engineering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Geim and K. S. Novoselov, Nat. Mater, 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. H. Castro Neto, N. M. R. Peres, F. Guinea, et al., Rev. Mod. Phys, 81, 109 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    L. A. Chernozatonskii, P. B. Sorokin, A. A. Artukh, Russian Chemical Reviews, 83, Issue 3, 251–279 (2014).Google Scholar
  4. 4.
    J. Liang, Y. Chen, Y. Xu, et al., ACS Appl. Mater. Interfaces, 2, 3310 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, Nat. Nanotechnol., 3, 397 (2008).CrossRefGoogle Scholar
  6. 6.
    Z. Wei, D. Wang, S. Kim, et al., Science, 328, 1373 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    A. Maffucci and G. Miano, IEEE Trans. Nanotechnol., 12, 817 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. Maffucci and G. Miano, Appl. Sci., 4, 305 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Christensen, A. Manjavacas, S. Thongrattanasiri, et al., ACS Nano, 6, 431 (2012).CrossRefGoogle Scholar
  10. 10.
    R. R. Hartmann, N. J. Robinson, and M. E, Portnoi, Phys. Rev. B., 81, 245431 (2010).Google Scholar
  11. 11.
    X. Zhu, W. Yan, N. A. Mortensen, and S. Xiao, Opt. Express, 21, 3486 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    P. B. Bennett, Z. Pedramrazi, A. Madani, et al., Appl. Phys. Lett., 103, 253114 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    W. S. Hwang, P. Zhao, K. Tahy, et al., APL Mater., 3, 011101 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    J. G. Son, M. Son, K.-J. Moon, et al., Adv. Mater., 25, 4723 (2013).CrossRefGoogle Scholar
  15. 15.
    S. Blankenburg, J. Cai, P. Ruffieux, et al., ACS Nano, 6, 2020 (2012).CrossRefGoogle Scholar
  16. 16.
    J. Cai, C. A. Pignedoli, L. Talirz, et al., Nat. Nanotechnol., 9, 896 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    H. Sevincli, M. Topsakal, and S. Ciraci, Phys. Rev. B., 78, 245402 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    M. Topsakal, H. Sevincli, and S. Ciraci, Appl. Phys. Lett., 92, 173118 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    X. Wu and X. C. Zeng, Nano Res., 1, 40 (2008).CrossRefGoogle Scholar
  20. 20.
    E. Costa Girão, L. Liang, E. Cruz-Silva, et al., Phys. Rev. Lett., 107, 135501 (2011).ADSCrossRefGoogle Scholar
  21. 21.
    J. Cai, P. Ruffieux, R. Jaafar, et al., Nature, 466, 470 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Saroka, K. G. Batrakov, L. A. Chernozatonskii, J. Phys. of the Solid State, 56, Issue 10, 2135–2145 (2014).Google Scholar
  23. 23.
    V. A. Saroka, K. G. Batrakov, V. A. Demin, and L. A. Chernozatonskii, J. Phys. Cond. Matter, 27, 145305 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    C. T. White, J. Li, D. Gunlycke, and J. W. Mintmire, Nano Lett., 7, 825 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn., 65, 1920 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    K. Nakada, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Phys. Rev. B., 54, 17954 (1996).ADSCrossRefGoogle Scholar
  27. 27.
    Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 97, 216803 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.University of ExeterExeterUnited Kingdom
  2. 2.Research Institute for Nuclear Problems of the Belarusian State UniversityMinskBelarus

Personalised recommendations