Advertisement

Russian Physics Journal

, Volume 58, Issue 10, pp 1448–1456 | Cite as

Analysis of Generalization of a Series of Images by Superimposed Fourier Holograms

  • A. V. Pavlov
Article
  • 36 Downloads

The problem of recognition of the common fragments in a series of images in the absence of a priori criteria relating any one fragment to the common fragments, apart from the frequency of its appearance, is considered with application to recording of superimposed Fourier holograms with spatially modulated reference images. An analysis of the dependence of the variance of the reconstructed images on the number of superimposed holograms and the characteristics of the recorded images is given. It is shown that the problem can be solved for correlated reference images. Theoretical conclusions are confirmed by numerical modeling for presentation images by realizations of a stationary random process.

Keywords

superimposed holograms Fourier holography associative memory sequence of images holographic recording media correlation recognition of common fragments inductive generalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Van Heerden, Appl. Opt., 2, No. 4, 387–392 (1963).CrossRefADSGoogle Scholar
  2. 2.
    P. J. Van Heerden, Appl. Opt., 2, No. 4, 393–400 (1963).CrossRefADSGoogle Scholar
  3. 3.
    A. L. Mikaélyan and V. I. Bobrinev, Dokl. Akad. Nauk, 191, No. 4, 799 (1970).Google Scholar
  4. 4.
    A. L. Mikaélyan and V. I. Bobrinev, Radiotekhnika, 29, No. 4, 7–18 (1974).Google Scholar
  5. 5.
    L. M. Serebryakova, Opt. Spektr., 89, 783–791 (2000).CrossRefADSGoogle Scholar
  6. 6.
    A. Yu. Betin, V. I. Bobrinev, N. N. Evtikhiev, et al., Kvant. Elektron., 43, No. 1, 87–89 (2013).CrossRefADSGoogle Scholar
  7. 7.
    A. Yu. Betin, V. I. Bobrinev, S. B. Odinokov, et al., Appl. Opt., 52, No. 33, 8142–8145 (2013).CrossRefADSGoogle Scholar
  8. 8.
    H. C. Longuet-Higgins, Nature, 217, 104 (1968).CrossRefADSGoogle Scholar
  9. 9.
    D. Gabor, Nature, 217, 584 (1968).CrossRefADSGoogle Scholar
  10. 10.
    H. J. Mager, O. Wess, and W. Waidelich, Opt. Commun., 9, No. 2, 156–160 (1973).CrossRefADSGoogle Scholar
  11. 11.
    O. Wess and U. Roeder, Biol. Cybernetics, 27, No. 2, 89–98 (1977).CrossRefGoogle Scholar
  12. 12.
    V. N. Borkova, V. A. Zubov, and A. V. Kraiskii, Trudy Fiz. Inst. Akad. Nauk, 131, 68–105 (1982).Google Scholar
  13. 13.
    V. N. Borkova, V. A. Zubov, and A. V. Kraiskii, Opt. Spektr., 63, No. 2, 384–387 (1987).Google Scholar
  14. 14.
    A. V. Kraiskii, Preprint of Fiz. Inst. Akad. Nauk, No. 222, Moscow (1988).Google Scholar
  15. 15.
    D. J. Foster and M. A. Wilson, Nature, 440, 680–683 (2006).CrossRefADSGoogle Scholar
  16. 16.
    D. Psaltis and N. Farhat, Opt. Lett., 10, No. 2, 98–100 (1985).CrossRefADSGoogle Scholar
  17. 17.
    N. H. Farhat, D. Psaltis, A. Prata, and E. Paek, Appl. Opt., 24, 1469–1475 (1985).CrossRefADSGoogle Scholar
  18. 18.
    B. H. Soffer, G. J. Dunning, Y. Owechko, and E. Marom, Opt. Lett., 11, No. 2, 118–120 (1986).CrossRefADSGoogle Scholar
  19. 19.
    A. Vander Lught, IEEE Trans., IT-10, No. 2, 139–145 (1964).Google Scholar
  20. 20.
    A. V. Pavlov, Opt. Spektr. 90, No. 3, 515–520 (2001).Google Scholar
  21. 21.
    A. V. Pavlov, Opt. Zh., 69, No. 10, 42–48 (2002).Google Scholar
  22. 22.
    A. V. Pavlov, Iskusstv. Intell. Prin. Resh., No. 3, 26–38 (2012).Google Scholar
  23. 23.
    A. V. Pavlov, Opt. Spektr., 98, No. 6, 1033–1037 (2005).Google Scholar
  24. 24.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, Dover Publications, Mineola, New York, June 24, 2000.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia

Personalised recommendations