Advertisement

Russian Physics Journal

, Volume 58, Issue 10, pp 1420–1430 | Cite as

Pulsed Coherent Teragraphy: Imaging in the Terahertz Frequency Range

  • V. G. Bespalov
Article

Principles of recording the amplitudes and phases of wave fields in the terahertz (THz) frequency range are considered and methodology and schemes used for imaging in this range are analyzed. Generation of THz radiation by femtosecond optical pulses and registration of THz electric field waveforms allow the methods for holographic recording and image restoration to be developed. Results of the experiments on reconstruction of phase characteristics of THz field by the suggested holographic method are demonstrated and the influence of the experimental parameters on the quality of image restoration in time-resolved THz holography is analyzed.

Keywords

terahertz radiation terahertz holography diffraction methods of numerical wave front reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Glagolewa-Arkadiewa, Nature, 113, No. 2844, 640 (1924).CrossRefADSGoogle Scholar
  2. 2.
    I. V. Gekker and V. I. Yur’ev, Submillimeter Waves [in Russian], Gosenergizdat, Moscow (1961).Google Scholar
  3. 3.
    X. C. Zhang and J. Xu, Introduction to THz Wave Photonics, Springer, New York (2010).CrossRefGoogle Scholar
  4. 4.
    D. F. Plusquellic, K. Siegrist, E. J. Heilweil, et al., Chem. Phys. Chem., 8, No. 17, 2412–2431 (2007).Google Scholar
  5. 5.
    M. V. Tsurkan, N. S. Balbekin, E. A. Sobakinskaya, et al., Opt. Spectrosc., 114, No. 6, 894–898 (2013).CrossRefADSGoogle Scholar
  6. 6.
    M. V. Duka, Yu. S. Nesgovorova, O. A. Smolyanskaya, et al., J. Opt. Technol., 80, No. 11, 655–660 (2013).CrossRefGoogle Scholar
  7. 7.
    M. C. Kemp, in: IEEE Conf. on Advanced Video and Signal Based Surveillance, 7–9 (2007).Google Scholar
  8. 8.
    J. A. Zeitler, P. F. Taday, D. A. Newnham, et al., J. Pharm. Pharmacol., 59, No. 2, 209–223 (2007).CrossRefGoogle Scholar
  9. 9.
    E. Pickwell and V. P. Wallace, J. Phys., D39, No. 17, 301–310 (2006).ADSGoogle Scholar
  10. 10.
    S. V. Smirnov, Ya. V. Grachev, A. N. Tsypkin, et al., J. Opt. Technol., 81, No. 8, 464–467 (2014).Google Scholar
  11. 11.
    W. L. Chan, J. Deibel, and D. M. Mittleman, Rep. Prog. Phys., 70, No. 8, 1325 (2007).CrossRefADSGoogle Scholar
  12. 12.
    Y.-S. Lee, Principles of Terahertz Science and Technology, Springer, New York (2009).Google Scholar
  13. 13.
    K.-E. Peiponen, J. A. Zeitler, and K.-G. Makoto, eds., Terahertz Spectroscopy and Imaging, Springer Verlag, Heidelberg; Berlin (2013); doi:  10.1007/978-3-642-29564-5.
  14. 14.
    D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE J. Sel. Topics Quantum Electron., 2, No. 3, 679– 692 (1996).CrossRefGoogle Scholar
  15. 15.
    G. Matthäus, T. Schreiber, J. Limpert, et al., Opt. Commun., No. 261, 114 (2006).Google Scholar
  16. 16.
    M. Mukherjee, N. Mazumder, S.K. Roy, et al., Semicond. Sci. Technol., 22, No. 12, 1258 (2007).CrossRefADSGoogle Scholar
  17. 17.
    P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, J. Opt. Soc. Am., B12, 2533–2546 (1994).ADSGoogle Scholar
  18. 18.
    A. G. Davies, E. H. Linfield, and M. B. Johnston, Phys. Med. Biol., 47, 3679– 3689 (2002).CrossRefGoogle Scholar
  19. 19.
    V. L. Malevich, P. A. Ziaziulia, R. Adomavičius, et al., J. Appl. Phys., 112, No. 7, 073115 (2012).CrossRefADSGoogle Scholar
  20. 20.
    S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics, Woodhead Publishing, Cambridge (2013).CrossRefGoogle Scholar
  21. 21.
    P. Campbell, M. Li, Z. G. Lu, et al., Proc. SPIE., 3269, 114–124 (1998).CrossRefADSGoogle Scholar
  22. 22.
    M. Nagai, K. Tanaka, H. Ohtake, et al., Appl. Phys. Lett., 85, 3974 (2004).CrossRefADSGoogle Scholar
  23. 23.
    A. Marandi, T. E. Darcie, and P. P. M. So, Opt. Express, 16, 10427–10433 (2008).CrossRefADSGoogle Scholar
  24. 24.
    S. Winnerl, F. Peter, S. Nitsche, et al., IEEE J. Sel. Top. Quant. Electron., 14, No. 2, 449–457 (2008).CrossRefGoogle Scholar
  25. 25.
    A. Singh, P. Sanjoy, S. Harshad, et al., Opt. Express, 23, 6656–6661 (2015).CrossRefADSGoogle Scholar
  26. 26.
    J. Lloyd-Hughes, E. Castro-Camus, and M. B. Johnston, Solid State Commun., 136, 595–599 (2005).CrossRefADSGoogle Scholar
  27. 27.
    M. Nakajima, M. Takahashi, and M. Hangyo, J. Lumin., 94–95, 627–630 (2001).CrossRefGoogle Scholar
  28. 28.
    J. N. Heyman, P. Neocleous, D. Hebert, et al., Phys. Rev., B64, No. 8, 085202 (2001).CrossRefADSGoogle Scholar
  29. 29.
    V. G. Bespalov, V. N. Krylov, and S. E. Putilin, Opt. Spectrosc., 93, No. 1, 148 (2002).CrossRefADSGoogle Scholar
  30. 30.
    M. Migita and M. Hangyo, Appl. Phys. Lett., 79, 3437 (2001).CrossRefADSGoogle Scholar
  31. 31.
    V. N. Trukhin, A. S. Buyskikh, N. A. Kaliteevskaya, et al., Appl. Phys. Lett., 103, 072108 (2013).CrossRefADSGoogle Scholar
  32. 32.
    V. N. Trukhin, A. D. Bouravleuv, I. A. Mustafin, et al., Appl. Phys. Lett., 106, 252104 (2015).CrossRefADSGoogle Scholar
  33. 33.
    Q. Wu and X. C. Zhang, Appl. Phys. Lett., 67, No. 24, 3523–3525 (1995).CrossRefADSGoogle Scholar
  34. 34.
    Y. Cai, I. Brener, J. Lopata, et al., Appl. Phys. Lett., 73, 444 (1999).CrossRefADSGoogle Scholar
  35. 35.
    M. Hangyo, M. Tani, and T. Nagashima, Int. J. Infrared and Millimeter Waves, 26, No. 12, 1661–1690 (2005).CrossRefADSGoogle Scholar
  36. 36.
    S. V. Smirnov, Ya. V. Grachev, A. N. Tsypkin, et al., J. Opt. Technol., 81, 464–467 (2014).Google Scholar
  37. 37.
    M. Walther, B. Fischer, M. Schall, et al., Chem. Phys. Lett., 332, 389–395 (2000).CrossRefADSGoogle Scholar
  38. 38.
    J. M. Berg, J. L. Tymoczko, and L. Stryer, Biochemistry, W. H. Freeman, New York (2002).Google Scholar
  39. 39.
    R. M. Woodward, D. E. Cole, V. P. Wallace, et al., Phys. Med. Biol., 47, 3853– 3863 (2002).CrossRefGoogle Scholar
  40. 40.
    H. Abdorreza, Springer Series in Bio-Neuroinformatics, 5, 663–670 (2015).CrossRefGoogle Scholar
  41. 41.
    B. Hu and M. Nuss, Opt. Lett., 20, No. 16, 1716–1718 (1995).CrossRefADSGoogle Scholar
  42. 42.
    Z. Jiang, X. G. Xu, and X. C. Zhang, Appl. Opt., 39, No. 17, 2982–2987 (2000).CrossRefADSGoogle Scholar
  43. 43.
    V. N. Trukhin, A. V. Andrianov, V. A. Bikov, et al., JETP Lett., 93, No. 3, 119–123 (2011).CrossRefADSGoogle Scholar
  44. 44.
    V. P. Wallace et al., J. Opt. Soc. Am., A25, No. 12, 3120–3133 (2008).CrossRefADSGoogle Scholar
  45. 45.
    W. L. Chan, K. Charan, D. Takhar, et al., Appl. Phys. Lett., 93, No. 12, 121105 (2008).CrossRefADSGoogle Scholar
  46. 46.
    K. Lee and J. Ahn, Appl. Phys. Lett., 97, No. 24, 241101 (2010).CrossRefADSGoogle Scholar
  47. 47.
    L. Zhang, H. Zhong, Ya. Zhang, et al., J. Opt. Soc. Amer., A26, No. 5, 1187–1190 (2009).Google Scholar
  48. 48.
    E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett., 24, 291–293 (1999).CrossRefADSGoogle Scholar
  49. 49.
    B. A. Knyazev, A. L. Balandin, V. S. Cherkassky, et al., in: Proc. 35th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (2010).Google Scholar
  50. 50.
    Q. Li, K. Xue, Y. D. Li, et al., Appl. Opt., 51, No. 29, 7052–7058 (2012).CrossRefADSGoogle Scholar
  51. 51.
    E. Hack and P. Zolliker, Opt. Express, 22, No. 13, 16079–16086 (2014).CrossRefADSGoogle Scholar
  52. 52.
    V. Bespalov and A. Gorodetsky, J. Opt. Technol., 74, No. 11, 745–749 (2007).CrossRefGoogle Scholar
  53. 53.
    A. A. Gorodetsky and V. G. Bespalov, Proc. SPIE, 7601, 760107-1–760107-6 (2010).Google Scholar
  54. 54.
    L. Zhang, Y. Zhang, C. Zhang, et al., Opt. Lett., 31, 3668–3670 (2006).CrossRefADSGoogle Scholar
  55. 55.
    L. Zhang, H. Zhong, Y. Zhang, et al., J. Opt. Soc. Amer., 26, No. 5, 1187–1190 (2009).CrossRefADSGoogle Scholar
  56. 56.
    N. V. Petrov, A. A. Gorodetsky, and V. G. Bespalov, Proc. SPIE., 8846, 88460S-1–88460S-7 (2013).Google Scholar
  57. 57.
    V. G. Bespalov and A. A. Gorodetsky, J. Holography Speckle, 5, No. 1, 62–66 (2009).CrossRefGoogle Scholar
  58. 58.
    J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Book Co., New York (1968).Google Scholar
  59. 59.
    J. Gaskill, Linear Systems, Fourier Transforms, and Optics, Wiley, New York (1978).Google Scholar
  60. 60.
    M. S. Kulya, et al., J. Phys.: Conf. Ser. IOP Publishing, 536, No. 1, 012010 (2014).Google Scholar
  61. 61.
    D. I. Staselko and A. L. Churaev, Sov. Phys.-Tech. Phys., 31, 197–202 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Saint Petersburg National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia

Personalised recommendations