Russian Physics Journal

, Volume 58, Issue 5, pp 629–634 | Cite as

Electromagnetic Characteristics of Thin Polyethylene-Carbon-Polyethylene Films

  • N. I. Volynets
  • A. G. Lyubimov
  • A. O. Plyushch
  • O. G. Poddubskaya
  • P. P. Kuzhir
  • E. Yu. Korovin
  • V. I. Suslyaev
  • J. Macutkevic
  • E. S. Pikutskaya
  • S. A. Baturkin
  • A. Ya. Klochkov
PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • 43 Downloads

A method of manufacturing a polyethylene – expanded carbon – polyethylene layered structures which allows thin (down to 90 μm) and flexible sandwiches to be easily made, is suggested. The electromagnetic properties of the manufactured composite materials at frequencies from 1 MHz to 3 GHz, 26–37.5 GHz, and 0.1–1.4 THz are analyzed. It is established that the material so obtained is opaque for the Ka microwave band due to high reflectivity (96–97%), does not transmit electromagnetic radiation of the terahertz range, has a high conductivity (up to 1 S/m) in the frequency range from 1 MHz to 1 GHz, and retains the main physical polyethylene properties (light weight, elasticity, and flexibility).

Keywords

expanded carbon polyethylene electromagnetic properties protective coatings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. D’yachkov, Carbon Nanotubes: Structure, Properties, and Application [in Russian], The Binom Knowledge Laboratory Publishers, Moscow (2006).Google Scholar
  2. 2.
    A. K. Geim, S. V. Dubonos, I. V. Grigorieva, et al., Nature Mater. 2, No. 7, 461 (2003).CrossRefADSGoogle Scholar
  3. 3.
    F. Qin and C. Brosseau, J. Appl. Phys., 111, 1 (2012).Google Scholar
  4. 4.
    I. Kranauskaite, J. Macutkevic, P. Kuzhir, et al., Phys. Status Solidi, A211, No. 7, 1623 (2014).CrossRefGoogle Scholar
  5. 5.
    R. Kotsilkova, Thermoset Nanocomposites for Engineering Applications, Rapra Smiths, UK (2007).Google Scholar
  6. 6.
    P. Kuzhir, A. Paddubskaya, A. Plyushch, et al., J. Appl. Phys., 114, 164304 (2013).CrossRefADSGoogle Scholar
  7. 7.
    L. J. Adriaanse, J. A. Reedijk, P. A. A. Teunissen, et al., Phys. Rev. Lett., 78, 1755 (1997).CrossRefADSGoogle Scholar
  8. 8.
    J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, et al., Polymer, 44, 5893 (2003).CrossRefGoogle Scholar
  9. 9.
    V. G. Andreev, A. A. Karabutov, and V. A. Vdovin, Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations, 5, No. 39, 24–26 (2001).Google Scholar
  10. 10.
    V. G. Andreev and V. A. Vdovin, Problems of Atomic Science and Technology. Series: Nuclear Physics Investigations, 2, No. 53, 92–95 (2010).ADSGoogle Scholar
  11. 11.
    H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett., 82, No. 9, 1353 (2003).CrossRefADSGoogle Scholar
  12. 12.
    S. K. Hong, K. Y. Kim, T. Y. Kim, et al., Nanotechnology, 23, 455704 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Batrakov, P. Kuzhir, S. Maksimenko, et al., Appl. Phys. Lett., 103, 073117 (2013).CrossRefADSGoogle Scholar
  14. 14.
    P. Kuzhir, A. Paddubskaya, S. Maksimenko, et al., Nanoscale Res. Lett., 8, Art. 60, doi: 10.1186/1556-276X-8-60 (2013).
  15. 15.
    K. Batrakov, P. Kuzhir, S. Maksimenko, et al., Sci. Rep. 4, Art. 7191, doi: 10.1038/srep07191 2014 (2014).
  16. 16.
    P. Kuzhir, N. Volynets, S. Maksimenko, et al., J. Nanosci. Nanotech., 13, No. 8, 5864–5867 (2013).CrossRefGoogle Scholar
  17. 17.
    N. Li., Y. Huang, F. Du, et al., Nanoletters, 6, No. 6, 1141–1145 (2006).CrossRefADSGoogle Scholar
  18. 18.
    N. Mazov, V. Kuznetsov, S. Moseenkov, et al., Phys. Status Solidi, B246, 2662–2666 (2009).CrossRefADSGoogle Scholar
  19. 19.
    Y. Bayram, Y. Zhou, B. S. Shim, et al., IEEE Trans. Antennas Propag., 58, No. 8, 2732–2736 (2010).CrossRefADSGoogle Scholar
  20. 20.
    Y. Zhou, Y. Bayram, F. Du, et al., IEEE Trans. Antennas Propag., 58, 2169–2175 (2010).CrossRefADSGoogle Scholar
  21. 21.
    A. Mehdipour, I. D. Rosca, A. R. Sebak, et al., IEEE Trans. Anten. Propag., 59, 3572–3579 (2011).CrossRefADSGoogle Scholar
  22. 22.
    Z. Wang, L. Zhang, Y. Bayram, and J. L. Volakis, IEEE Trans. Anten. Propag., 60, 4141–4147 (2012).CrossRefADSGoogle Scholar
  23. 23.
    L. F. Chen, C. K. Ong, C. P. Neo, et al., Microwave Electronics: Measurement and Material at Microwave Frequencies, John Wiley & Sons Ltd, England (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. I. Volynets
    • 1
  • A. G. Lyubimov
    • 2
  • A. O. Plyushch
    • 1
  • O. G. Poddubskaya
    • 1
  • P. P. Kuzhir
    • 1
    • 3
  • E. Yu. Korovin
    • 3
  • V. I. Suslyaev
    • 3
  • J. Macutkevic
    • 4
  • E. S. Pikutskaya
    • 5
  • S. A. Baturkin
    • 6
  • A. Ya. Klochkov
    • 6
  1. 1.Research Institute for Nuclear Problems of Belarusian State UniversityMinskBelarus
  2. 2.Belarusian State Technological UniversityMinskBelarus
  3. 3.National Research Tomsk State UniversityTomskRussia
  4. 4.Vilnus UniversityVilnusLithuania
  5. 5.Institute of Physical Organic Chemistry of National Academy of Sciences of BelarusMinskBelarus
  6. 6.Ryazan’ State Radioengineering UniversityRyazan’Russia

Personalised recommendations