Russian Physics Journal

, Volume 58, Issue 4, pp 508–516 | Cite as

Motion of a Charged Particle in the Field of a Circularly Polarized Amplitude-Modulated Electromagnetic Wave in the Presence of a Constant Magnetic Field

  • G. F. Kopytov
  • A. A. Martynov
  • N. S. AkintsovEmail author

An analysis of the problem of motion of a charged particle in the field of a circularly polarized amplitudemodulated electromagnetic plane wave in the presence of a constant homogeneous magnetic field is presented. Formulas are obtained for the average kinetic energy of the particle. The dependence of the average kinetic energy on the intensity of the electromagnetic wave is derived.


electromagnetic plane wave modulation frequency average kinetic energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Galkin, M. Yu. Romanovsky, O. B. Shiryaev, et al., Phys. Plasmas, 15, 023104 (2008).CrossRefADSGoogle Scholar
  2. 2.
    A. L. Galkin, V. A. Egorov, M. P. Kalashnikov, et al., Contrib. Plasma Phys., 49, No. 7–8, 544 (2009).CrossRefADSGoogle Scholar
  3. 3.
    A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz., 34, No. 2, 242–243 (1958).Google Scholar
  4. 4.
    D. R. Bityuk and M. V. Fedorov, Zh. Eksp. Teor. Fiz., 116, No. 5, 146–148 (1999).Google Scholar
  5. 5.
    A. L. Galkin, V. V. Korobkin, M. Yu. Romanovsky, and O. B. Shiryaev, Zh. Eksp. Teor. Fiz., 127, No. 5, 1195–1207 (2005).Google Scholar
  6. 6.
    V. G. Bagrov and V. A. Bordovitsyn, Zh. Vychisl. Mat. Mat. Fiz., 8, No. 3, 691–695 (1968).Google Scholar
  7. 7.
    V. G. Bagrov, D. M. Gitman, and P. M. Lavrov, Russ. Phys. J., 17, No. 6, 808–811 (1974,).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Vol. 2, Butterworth-Heinemann, London (1975).Google Scholar
  9. 9.
    C. S. Roberts and S. J. Buchsbaum, Phys. Rev., 135, A381 (1964).MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    V. G. Bagrov, D. M. Gitman, I. M. Ternov, et al., Exact Solution of Relativistic Wave Equations [in Russian], Nauka, Novosibirsk (1982).Google Scholar
  11. 11.
    V. G. Bagrov, G. S. Bisnovatyi-Kogan, V. A. Bordovitsyn, et al., Theory of Emission by Relativistic Particles [in Russian], Fizmatlit, Moscow (2002).Google Scholar
  12. 12.
    G. F. Kopytov, V. B. Tlyachev, and S. S. Oksuzyan, Izv. Vyssh. Uchebn. Zaved. Fiz., 28, No. 2, 110–111 (1986).Google Scholar
  13. 13.
    G. F. Kopytov, S. S. Oksuzyan, and V. B. Tlyachev, Paper deposited at VINITI, No. 7353-87, Moscow (September 14, 1985).Google Scholar
  14. 14.
    G. F. Kopytov, A. A. Martynov, and N. S. Akintsov, Ekolog. Vestn. Nauchn. Tsentr. Chernomorsk. Ekonomich. Sotrudn., 2, 39–43 (2014).Google Scholar
  15. 15.
    V. P. Milan’t’ev, Usp. Fiz. Nauk, 167, No. 1, 3–16 (1997).CrossRefGoogle Scholar
  16. 16.
    V. P. Milan’t’ev, Usp. Fiz. Nauk, 183, No. 8, 875–884 (2013).CrossRefGoogle Scholar
  17. 17.
    E. G. Bessonov, Trudy Fizich. Inst. Imeni P. N. Lebedeva, 214, 3–101 (1993).Google Scholar
  18. 18.
    G. S. Landsberg, Optics [in Russian], Fizmatlit, Moscow (2003).Google Scholar
  19. 19.
    G. F. Kopytov and V. B. Tlyachev, Paper deposited at VINITI, No. 6526-84, Moscow (October 11, 1984).Google Scholar
  20. 20.
    R. G. Newton, Scattering Theory of Waves and Particles, Dover Publications, Mineola, New York (2013).Google Scholar
  21. 21.
    R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland Personal Library, Amsterdam (1988).Google Scholar
  22. 22.
    S. N. Andreev, V. P. Makarov, and A. A. Rukhadze, Kvant. Elektron., 39, No. 1, 68–72 (2009).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. F. Kopytov
    • 1
  • A. A. Martynov
    • 1
  • N. S. Akintsov
    • 1
    Email author
  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations