Advertisement

Russian Physics Journal

, Volume 58, Issue 4, pp 485–491 | Cite as

Structural-Phase Transformations of an fcc-Alloy During Thermal Cycling

  • P. A. ChaplyginEmail author
  • M. D. Starostenkov
  • A. I. Potekaev
  • A. A. Chaplygina
  • A. A. Klopotov
  • V. V. Kulagina
  • L. S. Grinkevich
Article

Using an intermetallic compound of the Ni–Al system as an example, it is shown by the Monte Carlo technique that the processes developed during thermal cycling in the course of structural phase transformations in FCCalloys are irreversible. As a result of a heating–cooling cycle, a certain hysteresis is observed, whose presence suggests an irreversibility of these processes, which is indicative of the difference in the structural-phase states in the stages of heating and cooling. An analysis of the atomic and phase structure of the intermetallic system during its heating–cooling, i.e., in the course of order–disorder and disorder–order phase transformations has supported the difference in its structural-phase states in the stages of heating and cooling. Upon completion of the disorder–order phase transition, two antiphase domains with B2 superstructure are formed in the system. It is demonstrated that to ensure an order–disorder transition the system has to be somewhat overheated in contrast to a commonly acknowledged phase transformation temperature, while to achieve a disorder–order transition it has to be somewhat overcooled with respect to this temperature.

Keywords

order–disorder phase transition simulations structural-phase transformations condensed matter systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Starostenkov, N. N. Medvedev, and O. V. Pozhidaeva, Mater. Sci. Forum, 567–568, 165–168 (2008).CrossRefGoogle Scholar
  2. 2.
    A. I. Potekaev, V. A. Starenchenko, V. V. Kulagina, et al., Low-Stability States of Metallic Systems (Ed. A. I. Potekaev) [in Russian], Tomsk, NTL Publ. (2012).Google Scholar
  3. 3.
    A. I. Potekaev, M. D. Starostenkov, and V. V. Kulagina, The Effect of Point and Planar Defects on Structural-Phase Transformationsin a Pre-Transitional Low-Stability Region of Metallic Systems (Systems (Ed. A. I. Potekaev) [in Russian], Tomsk, NTL Publ. (2014).Google Scholar
  4. 4.
    A. I. Potekaev, E. A. Dudnik, M. D. Starostenkov, et al., Russ. Phys. J., 53, No. 3, 213–224 (2010).zbMATHCrossRefGoogle Scholar
  5. 5.
    A. I. Potekaev, E. A. Dudnik, M. D. Starostenkov, V. V. Kulagina, et al., Russ. Phys. J., 53, No. 5, 465–479 (2010).CrossRefGoogle Scholar
  6. 6.
    A. I. Potekaev and V. V. Kulagina, Russ. Phys. J., 54, No. 8, 839–854 (2011).CrossRefGoogle Scholar
  7. 7.
    A. I. Potekaev and V. V. Kulagina, Izv. Vyssh. Uchebn. Zaved. Fiz., 52, No. 8/2, 456–459 (2009).Google Scholar
  8. 8.
    A. A. Klopotov, A. I. Potekaev, É. V. Kozlov, and V. V. Kulagina, Russ. Phys. J., 54, No. 9, 1012–1023 (2012).CrossRefGoogle Scholar
  9. 9.
    A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 54, No. 4, 117–124 (2011).Google Scholar
  10. 10.
    A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 9, No. 3, 367–374 (2012).Google Scholar
  11. 11.
    V. V. Kulagina, A. A. Chaplygina, A. A. Popova, et al., Russ. Phys. J., 55, No. 7, 814–824 (2012).CrossRefGoogle Scholar
  12. 12.
    A. I. Potekaev, S. V. Dmitriev, V. V. Kulagina, et al., Low-Stability Long-Period Structures in Metallic Systems [in Russian], Tomsk, NTL Publ. (2010).Google Scholar
  13. 13.
    A. I. Potekaev, A. A. Chaplygina, M. D. Starostenkov, et al., Fund. Probl. Sovr. Materialoved., 9, No. 4, 503–509 (2012).Google Scholar
  14. 14.
    A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., 55, No. 11, 1248–1257 (2013).Google Scholar
  15. 15.
    A. I. Potekaev, V. V. Kulagina, A. A. Chaplygina, et al., 56, No. 6, 620–629 (2013).Google Scholar
  16. 16.
    V. V. Kulagina, A. I. Potekaev, A. A. Klopotov, and M. D. Starostenkov, Russ. Phys. J., 55, No. 4, 323–361 (2012).CrossRefGoogle Scholar
  17. 17.
    A. I. Potekaev, A. A. Klopotov, V. E. Gunther, and V. V. Kulagina, Izv. Vyssh. Uchebn. Zaved. Chern. Metallurg., No. 10, 61–67 (2010).Google Scholar
  18. 18.
    V. I. Iveronova and A. A. Kantselson, Short-Range Order in Solid Solutions [in Russian], Moscow, Nauka (1977).Google Scholar
  19. 19.
    M. A. Krivoglaz and A. A. Smirnov, The Theory of Ordering Alloys [in Russian], Moscow, Fizmatgiz (1958).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. A. Chaplygin
    • 2
    Email author
  • M. D. Starostenkov
    • 2
  • A. I. Potekaev
    • 1
    • 4
  • A. A. Chaplygina
    • 2
  • A. A. Klopotov
    • 4
    • 5
  • V. V. Kulagina
    • 3
    • 4
  • L. S. Grinkevich
    • 1
  1. 1.National Research Tomsk State UniversityTomskRussia
  2. 2.I. I. Polzunov Altai State Technical UniversityBarnaulRussia
  3. 3.Siberian State Medical UniversityTomskRussia
  4. 4.V. D. Kuznetsov Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  5. 5.Tomsk State Architecture and Building UniversityTomskRussia

Personalised recommendations