Advertisement

Russian Physics Journal

, Volume 56, Issue 10, pp 1116–1123 | Cite as

Diagnostics of 3D Scaffolds by the Method of X-Ray Phase Contrast Visualization

  • V. R. Al’tapova
  • I. A. Khlusov
  • D. A. Karpov
  • F. Chen
  • T. Baumbach
  • V. F. Pichugin
Article
  • 127 Downloads

Polymers are one of the most interesting classes of materials for bioengineering due to their high biocompatibility and the possibility of regulating their strength and degradation. In bioengineering, the design of a polymer scaffold determines the functional possibilities of the scaffold and its possible medical applications. Traditionally, the design of polymer scaffolds is analyzed with the help of two-dimensional visualization methods, such as optical and electron microscopy, and computer tomography. However, the x-ray region of the electromagnetic spectrum is only insignificantly absorbed by polymers and soft tissue, which means that it does not support computer tomography with sufficient contrast. The present work investigates visualization with the help of an interferometer based on the Talbot effect for three-dimensional visualization of a polymer scaffold in absorption, phase, and dark-field contrasts. A comparison of images obtained by x-ray visualization with histological sections of the scaffold is made. Phase contrast has made it possible to visualize the polymer structure and growth of soft tissues in the volume of the scaffold. In the future, it will be possible to use phase contrast for three-dimensional visualization of polymer scaffolds and soft tissues in vivo as well as in vitro.

Keywords

polymer implants phase-contrast visualization synchrotron radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Biomaterials Science: an Introduction to Materials in Medicine, 2nd ed., Elsevier Academic Press, Amsterdam, Boston (2004).Google Scholar
  2. 2.
    J. Nepola, External Fixation. Rockwood and Green’s Fractures in Adults, Lippincot-Raven Publishers, Philadelphia (1996).Google Scholar
  3. 3.
    E. Rabkin and F. Schoen, Cardiovasc. Pathol., 11, 305–317 (2002).CrossRefGoogle Scholar
  4. 4.
    G. C. Kagadis, G. Loudos, K. Katsanos, et al., Medic. Phys., 37, No. 12, 6421–6442 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. S. Lewis, S. Achilefu, J. Garbow, et al., Eur. J. Cancer, 38, No. 16, 2173– 2188 (2002).CrossRefGoogle Scholar
  6. 6.
    S. M. Dorsey, S. Lin-Gibson, and C. G. Simon, Jr., Biomaterials, 30, No. 16, 2967–2974 (2009).CrossRefGoogle Scholar
  7. 7.
    S. T. Ho and D. W. Hutmacher, Biomaterials, 27, No. 8, 1362–1376 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Peuker, Appl. Phys. Lett., 78, No. 15, 2208–2210 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Lewis, Phys. Med. Biol., 49, No. 16, 3573 (2004).CrossRefGoogle Scholar
  10. 10.
    V. R. Al'tapova, A. A. Ershov, D. S. Rolot, et al., Poverkhn. Rentgen., Sinhrotr., Neitr. Issl., No. 5, 20 (2012).Google Scholar
  11. 11.
    F. Pfeiffer, M. Bech, O. Bunk, et al., Nature Mater., 7, No. 2, 134–137 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    F. Pfeiffer, C. David, O. Bunk, et al., Phys. Rev. Lett., 101, 168101 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    T. Volova, Polyhydroxyalkanoates – Рlastic Materials of the 21st Century: Production, Properties, and Application, Nova Science Publishers, Hauppauge, New York (2004).Google Scholar
  14. 14.
    S. Lee, S. Park, H. Pyo, and S. Kim, Med. Biol. Eng. Comput., 2, 1066–1067 (1999).Google Scholar
  15. 15.
    G. G. Avtandilov, Diagnostic Medical Ploidometry [in Russian], Meditsina, Moscow (2006),Google Scholar
  16. 16.
    V. Altapova, L. Helfen, A. Myagotin, et al., Opt. Express, 20, 6496–6508 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    I. Khlusov, L. Zagrebin, S. Shestov, and S. Naumov, Physical-Chemical Manipulations with Microbial and Mammalian Cells: From Experiments to Clinics. Stem Cell Applications in Disease and Health, Nova Science Publishers, Hauppauge, New York (2008).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. R. Al’tapova
    • 1
    • 2
    • 3
  • I. A. Khlusov
    • 2
  • D. A. Karpov
    • 2
  • F. Chen
    • 3
  • T. Baumbach
    • 1
    • 3
  • V. F. Pichugin
    • 2
  1. 1.Laboratory for Applications of Synchrotron RadiationKarlsruhe Institute of TechnologyEggenstein-LeopoldhafenGermany
  2. 2.Scientific Educational Center “Biocompatible Materials and Bioengineering” at National Research Tomsk Polytechnic University, Siberian State Medical University, and Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.Institute of Synchrotron Radiation, Karlsruhe Research CenterEggenstein-LeopoldhafenGermany

Personalised recommendations