Russian Physics Journal

, Volume 56, Issue 9, pp 1030–1038 | Cite as

Theoretical Modeling of Thermodynamic and Mechanical Properties of the Pure Components of Ti and Zr Based Alloys Using the Exact Muffin-Tin Orbitals Method

  • I. A. Abrikosov
  • A. Yu. Nikonov
  • A. V. Ponomareva
  • A. I. Dmitriev
  • S. A. Barannikova
Article

The exact muffin-tin orbitals (EMTO) method belongs to the third and latest generation of first-principles methods of calculating the electronic structure of materials in the so-called approximation of muffin-tin (MT) orbitals within the framework of the density functional theory. A study has been performed of its applicability for modeling the thermodynamic and mechanical properties of the pure components of Ti and Zr based alloys. The total energies of Ti, Zr, Nb, V, Mo, and Al are calculated in three crystal structures – face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP). For all of these elements and crystal structures, we have calculated the theoretical values of the lattice constants, elastic constants, and equations of state. The stable crystal structures have been determined. In all cases, calculations by the EMTO method predict the correct structure of the ground state. For stable structures we compared the obtained results with experiment and with calculations using full potential methods. We have demonstrated the reliability of the EMTO method and conclude that its further application for effective modeling of the properties of disordered alloys based on Ti and Zr is possible.

Keywords

first-principles calculation of electronic structure stability of crystal structure elastic constants Ti Zr Nb Mo and Al 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Martin, Electronic structure. Basic Theory and Practical Methods, Cambridge Univ. Press, Cambridge (2004).CrossRefMATHGoogle Scholar
  2. 2.
    A. V. Ruban and I. A. Abrikosov, Rep. Prog. Phys., 71, 046501 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    O. K. Andersen, O. Jepsen, and G. Krier, in: Lectures on Methods of Electronic Structure Calculations, edited by V. Kumar, O. Andersen, and A. Mookerjee, World Scientific Publishing Co., Singapore (1994), pp. 63–124.Google Scholar
  4. 4.
    L. Vitos, Computational Quantum Mechanics for Materials Engineers, Springer Verlag, Berlin (2007).Google Scholar
  5. 5.
    L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett., 87, 156401 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    V. L. Morruzi, J. F. Janak, and K. Schwartz, Phys. Rev., B37, 790 (1988).ADSCrossRefGoogle Scholar
  8. 8.
    C. Asker, L. Vitos, and I. A. Abrikosov, Phys. Rev., B79, 214112 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Wang, S. Curtarolo, C. Jiang, et al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 28, 79 (2004).CrossRefGoogle Scholar
  10. 10.
    R. G. Hennig, T. J. Lenosky, D. R. Trinkle, et al., Phys. Rev., B78, 054121 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    J. Z. Zhang, Y. S. Zhao, R. S. Hixson, et al., Phys. Rev., B78, 054119 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    B.-T. Wang, P. Zhang, H.-Y. Liu, et al., J. Appl. Phys., 109, 063514 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhao, J. Zhang, C. Pantea, et al., Phys. Rev., B71, 184119 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    E. A. Brandes, ed., Smithells Metals Reference Book, Butterworth, London (1983).Google Scholar
  15. 15.
    Y. Akahama, M. Nishimura, K. Kinoshita K., et al., Phys. Rev. Lett., 96, 045505 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    F. H. Featherstone and J. R. Neighbours, Phys. Rev. 130, No. 4, 1324 (1963).ADSCrossRefGoogle Scholar
  17. 17.
    W. E. Hubbell and F. R. Brotzen, J. Appl. Phys., 43, 3306 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    D. I. Bolef, R. E. Smith, and J. G. Miller, Phys. Rev., B3, 4100 (1971).ADSCrossRefGoogle Scholar
  19. 19.
    G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, Second Edition, MIT Press, Cambridge, MA (1971).Google Scholar
  20. 20.
    I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elastic Moduli of Metals and Nonmetals [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  21. 21.
    Y. Ding, R. Ahuja, J. Shu, et al., Phys. Rev. Lett., 98, 085502 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    A. Dewaele, M. Torrent, P. Loubeyre, and M. Mezouar, Phys. Rev., B78, 104102 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Akahama, M. Kobayashi, and H. Kawamura, J. Phys. Soc. Jpn., 60, 3211 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    A. Dewaele, P. Loubeyre, and M. Mezouar, Phys. Rev., B70, 094112 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, Phys. Rev., B87, 104111 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. A. Abrikosov
    • 1
  • A. Yu. Nikonov
    • 2
  • A. V. Ponomareva
    • 3
  • A. I. Dmitriev
    • 2
    • 4
  • S. A. Barannikova
    • 2
    • 4
  1. 1.Department of Physics, Chemistry and Biology of Linköping UniversityLinköpingSweden
  2. 2.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia
  4. 4.National Research Tomsk State UniversityTomskRussia

Personalised recommendations