Russian Physics Journal

, Volume 56, Issue 5, pp 532–541 | Cite as

Investigation of (Ti–Zr–Hf–V–Nb)N Multicomponent Nanostructured Coatings before and after Thermal Annealing by Nuclear Physics Methods of Analysis

  • A. D. Pogrebnjak
  • V. M. Beresnev
  • A. V. Bondar’
  • M. V. Kaverin
  • A. G. Ponomarev
Article

(Ti–Zr–Hf–V–Nb)N multicomponent nanostructured coatings with thickness of 1.0–1.4 μm synthesized by the method of cathode arc-vapor deposition at temperatures of 250–300°С are investigated by various mutually complementary methods of elemental structural analysis using slow positron beams (SPB), proton microbeam based particle-induced x-ray emission (μ-PIXE), energy-dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) analyses based on electron micro- and nanobeams, x-ray diffraction (XRD) method of phase structural analysis, and the “a–sin2φ” method of measuring a stressed-strained state (x-ray tensometry). The elemental composition, microstructure, residual stress in nanograins, profiles of defect and atom distributions with depth and over the coating surface in 3D-representation are studied for these coatings, and their phase composition, severely strained state, and composition of coatings before and after annealing at Tann = 600°С for annealing time τ = 30 min are investigated. It is demonstrated that the oxidation resistance of the examined coatings can be significantly increased by high-temperature annealing that leads to the formation of elastic severely strained compression state of the coating. Redistribution of elements and defects, their segregation near the interface boundaries and around grains and subgrains in the process of thermostimulated diffusion, and termination of spinodal segregation without considerable change of the average nanograin size are revealed.

Keywords

nanostructured coatings defects impurity segregation thermodiffusion composition stresses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Pogrebnjak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Usp. Fiz. Nauk, 179, 35 (2009).CrossRefGoogle Scholar
  2. 2.
    A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, Usp. Fiz. Nauk, 182, 287 (2012).CrossRefGoogle Scholar
  3. 3.
    A. D. Pogrebnjak, V. M. Beresnev, A. A. Dem’yanenko, et al., Fiz. Tverd. Tela, 54, No. 9, 1882–1890 (2012).Google Scholar
  4. 4.
    A. D. Pogrebnjak, O. V. Sobol’, V. M. Beresnev, et al., Pis’ma Zh. Tekh. Fiz., 35, 103 (2009).Google Scholar
  5. 5.
    V. Dolique, A.-L. Thomann, P. Brault, et al., Mater. Chem. Phys., 117, No. 1, 142–147 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Tsai, C. Wang, C. Tsai, et al., J. Electrochem. Soc., 158, No. 11, H1161–H1165 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Li and X. Zhang, Acta Metall. Sin. (Engl. Lett.), 22, No. 3, 219–224 (2009).CrossRefGoogle Scholar
  8. 8.
    S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and É. P. Pechkovskii, Kompoz. Nanostrukt., No. 2, 5–20 (2011).Google Scholar
  9. 9.
    A. D. Pogrebnjak, V. V. Uglov, M. V. Il’yashenko, et al., Nanostructured Materials and Nanotechnology IV: Ceramic Engineering and Science Proceedings, 31, No. 7, 115–126 (2010).CrossRefGoogle Scholar
  10. 10.
    O. V. Sobol’, A. D. Pogrebnjak, and V. M. Beresnev, Fiz. Met. Metalloved., 112, No. 2, 199–206 (2011).Google Scholar
  11. 11.
    J. Musil, J. Vlcek, and P. Zeman, Adv. Appl. Ceram., 107, 148–154 (2008).CrossRefGoogle Scholar
  12. 12.
    A. D. Korotaev, V. D. Borisov, V. Yu Meshkov, et al., Fizich. Mesomekh., No. 12, 79 (2009).Google Scholar
  13. 13.
    A. D. Korotaev, V. D. Borisov, V. Yu. Meshkov, et al., Russ. Phys. J., 2007, 50, No. 10, 969–979 (2009).CrossRefGoogle Scholar
  14. 14.
    O. V. Sobol’, A. A. Andreeve, V. F. Gorban’, et al., Pis’ma Zh. Tekh. Fiz., 38, No. 13, 41–48 (2012).Google Scholar
  15. 15.
    I. V. Blinkov, A. O. Volkhonskii, V. N. Anikin, et al., Fiz. Khim. Obrab. Mater., No. 4, 37–43 (2010).Google Scholar
  16. 16.
    L. Shao-Yi, C. Shou-Yi, H. Yi-Chung, et al., Surf. Coat. Technol., 206, 5096 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Musil, Surf. Coat. Technol., 207, 50–65 (2012).MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. D. Pogrebnjak and V. M. Beresnev, Nanocoatings, Nanosystems, and Nanotechnologies, Bentham Sci. Publ., New York (2012).Google Scholar
  19. 19.
    A. D. Pogrebnjak, A. P. Shpak, V. M. Beresnev, et al., J. Nanosci. Nanotech., 12, No. 12, 9213–9219 (2012).CrossRefGoogle Scholar
  20. 20.
    C. Hui-Wen, H. Ping-Kang, Y. Jien-Wei, et al., Surf. Coat. Technol., 202, 3360–3366 (2008).CrossRefGoogle Scholar
  21. 21.
    L. Chia-Han, C. Keng-Hao, L. Su-Jein, and Y. Jein-Wei, Surf. Coat. Technol., 202, 3732–3738 (2008).CrossRefGoogle Scholar
  22. 22.
    L. Chia-Han, T. Ming-Hung, L. Su-Jien, and Y. Jein-Wei, Surf. Coat. Technol., 201, 6993–6998 (2007).CrossRefGoogle Scholar
  23. 23.
    Y. Jein-Wei, C. Yu-Liang, L. Su-Jein, and C. Swe-Kai, Mater. Sci. Forum., 560, 1–9 (2007).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    N. A. Azarenkov, O. V. Sobol’, A. D. Pogrebnjak, and V. M. Beresnev, Engineering of Vacuum-Plasma Coatings [in Russian], Publishing House of Karazin Khar’kov National University, Khar’kov (2011).Google Scholar
  26. 26.
    H.-E. Shaefer, Phys. Status Solidi (a), 102, 47 (1987).ADSCrossRefGoogle Scholar
  27. 27.
    S. V. Rempel and A. I. Gusev, Pis’ma Zh. Eksp. Teor. Fiz., 88 (7), 508 (2008).Google Scholar
  28. 28.
    R. Wurschum, P. Farber, R. Dittmar, et al., Phys. Rev. Lett., 79, 4918 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    V. I. Lavrent’ev, A. D. Pogrebnjak, and R. Shandrik, Pis’ma Zh. Eksp. Teor. Fiz., 65 (1), 86 (1997).Google Scholar
  30. 30.
    S. Veprek, J. Vac. Sci. Tech., 125, 322 (2000).Google Scholar
  31. 31.
    J. Musil, Surf. Coat. Techbol., 125, 322 (2000).CrossRefGoogle Scholar
  32. 32.
    A. I. Gusev, Nanomaterials, Nanostructures, and Nanotekhnologies [in Russian], Fizmatlit, Moscow (2005).Google Scholar
  33. 33.
    R. Krause-Rehberg and H. S. Leipner, Positron Annihilation on Semiconductors: Study of Defects. Vol. 127, Series “Solid-State Sciences,” Springer Verlag, Berlin (1999).CrossRefGoogle Scholar
  34. 34.
    A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, et al., Tech. Phys. Lett., 38, No. 7, 623–626 (2012).ADSCrossRefGoogle Scholar
  35. 35.
    P. Misaelides, A. Hadzidimitriou, F. Noli, et al., Appl. Surf. Sci., 252 (23), 8043–8049 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • V. M. Beresnev
    • 2
  • A. V. Bondar’
    • 1
  • M. V. Kaverin
    • 1
  • A. G. Ponomarev
    • 3
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Khar’kov National UniversityKhar’kovUkraine
  3. 3.Institute of Applied Physics of the National Academy of Sciences of UkraineSumyUkraine

Personalised recommendations