Russian Physics Journal

, Volume 52, Issue 2, pp 210–215 | Cite as

An asymptotic approximation of the Fokker–Planck model of evolution of superthermal ultrarelativistic particles in the presence of interaction scaling

  • Yu. G. Ignat’evEmail author
  • P. A. Ziatdinov

The evolution of a superthermal relict plasma component is studied using a nonequilibrium model of the Universe [1] and a kinetic equation of the Fokker–Planck type [2]. Given is the evidence of two maxima in the distribution of superthermal particles. The first maximum can further evolve into an equilibrium distribution, whereas the second one can result in a high-energy tail of superthermal relict particles.


gravitation theory cosmology relativistic kinetics scaling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. G. Ignat’ev, Sov. Phys. J., No. 2, 104 (1986).Google Scholar
  2. 2.
    Yu. G. Ignat’ev, The Problems of Gravitation Theory, Relativistic Kinetics, and Evolution of the Universe [in Russian], Izd. KGPI, Kazan, 1988.Google Scholar
  3. 3.
    Yu. G. Ignat’ev and R. A. Ziatdinov, Gravitation & Cosmology, No. 4(48), 352 (2006).Google Scholar
  4. 4.
    Yu. G. Ignat’ev and R. A. Ziatdinov, Ibid., 14, No 4, 301 (2008).MathSciNetGoogle Scholar
  5. 5.
    I. S. Gradshtein and I. M. Pyzhik, The Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow, 1963.Google Scholar
  6. 6.
    N. N. Lebedev, Special Functions and Their Appendices [in Russian], Gos. Izd. Fiz. Mat. Lit., Moscow, 1963.Google Scholar
  7. 7.
    S. L. Sobolev, Equations of Mathematical Physics [in Russian], Nauka, Moscow, 1966.Google Scholar
  8. 8.
    M. A. Evgrafov, Analytical Functions [in Russian], Nauka, Moscow, 1991.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  1. 1.Tatar State Humanitarian-Pedagogical UniversityKazanRussia

Personalised recommendations