Advertisement

Russian Physics Journal

, Volume 50, Issue 9, pp 853–884 | Cite as

Constructing quantum observables and self-adjoint extensions of symmetric operators. II. Differential operators

  • B. L. Voronov
  • D. M. Gitman
  • I. V. Tyutin
Elementary Particle Physics and Field Theory

Abstract

We discuss a problem of constructing self-adjoint ordinary differential operators starting from self-adjoint differential expressions based on the general theory of self-adjoint extensions of symmetric operators outlined in [1]. We describe one of the possible ways of constructing in terms of the closure of an initial symmetric operator associated with a given differential expression and deficient spaces. Particular attention is focused on the features peculiar to differential operators, among them on the notion of natural domain and the representation of asymmetry forms generated by adjoint operators in terms of boundary forms. Main assertions are illustrated in detail by simple examples of quantum-mechanical operators like the momentum or Hamiltonian.

Keywords

Differential Operator Symmetric Operator Boundary Form Natural Domain Finite Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. L. Voronov, D. M. Gitman, and I. V. Tyutin, Russ. Phys. J, No. 1, 3–33 (2007).Google Scholar
  2. 2.
    H. Weyl, Götinger Nachrichten, 37–64 (1909).Google Scholar
  3. 3.
    H. Weyl, Math. Ann., 168, 220–269 (1910).CrossRefMathSciNetGoogle Scholar
  4. 4.
    H. Weyl, Götinger Nachrichten, 442–467 (1910).Google Scholar
  5. 5.
    M. H. Stone, Linear Transformations in Hilbert Space and their Applications to Analysis, Amer. Math. Soc., Colloquium Publications, Vol. 15, New York (1932).Google Scholar
  6. 6.
    E. C. Titchmarsh, Eigenfunction Expansions Assosiated with Second-Order Differential Equations, Clarendon Press, Oxford (1946).Google Scholar
  7. 7.
    B. M. Levitan, Eigenfunction Expansions Assosiated with Second-Order Differential Equations [in Russian], Gostechizdat, Moscow (1950).Google Scholar
  8. 8.
    F. Riesz and B. Sz.-Nagy, Lecons d’Analyse Fonctionnel, Academiai Kiado, Budapest (1972).Google Scholar
  9. 9.
    I. M. Gelfand and G. E. Shilov, Generalized Functions, Part 3 [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  10. 10.
    A. G. Kostyuchenko, S. G. Krein, and V. I. Sobolev, in: Mathematical Library Handbook (Functional Analysis), S. G. Krein, ed. [in Russian], Nauka, Moscow (1964).Google Scholar
  11. 11.
    N. Dunford and J. T. Schwartz, Linear Operators. Part II. Spectral Theory. Self-Adjoint Operators in Hilbert Space, Interscience Publishers, New York-London (1963).zbMATHGoogle Scholar
  12. 12.
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Pitman, Boston (1981).zbMATHGoogle Scholar
  13. 13.
    M. A. Naimark, Theory of Linear Differential Operators [Russian translation], Nauka, Moscow (1969).Google Scholar
  14. 14.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics. Vol. 2. Harmonic Analysis. Self-Adjointness, Academic Press, New York (1972).Google Scholar
  15. 15.
    R. D. Richtmyer, Principles of Advanced Mathematical Physics. Vol. 1, Springer-Verlag, New York-Heidelberg-Berlin (1978).zbMATHGoogle Scholar
  16. 16.
    V. C. L. Hutson and J. S. Pym, Applications of Functional Analysis and Operator Theory, Academic Press, London (1980).zbMATHGoogle Scholar
  17. 17.
    F. A. Berezin and M. A. Shubin, Schrödinger Equation, Kluwer Publ., New-York-Amsterdam (1991).zbMATHGoogle Scholar
  18. 18.
    J. Weidmann, Spectral Theory of Ordinary Differential Operators, Springer-Verlag, Berlin-New-York (1987).zbMATHGoogle Scholar
  19. 19.
    V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluver, Dordrecht (1991).Google Scholar
  20. 20.
    V. I. Gorbachuk, M. L. Gorbachuk, and A. N. Kochubei, Ukr. Mat. Zh., No. 10, 141 (1989).Google Scholar
  21. 21.
    A. V. Kuzhel and S. A. Kuzhel, Regular Extensions of Hermitian Operators, VSP, Utrecht (1998).zbMATHGoogle Scholar
  22. 22.
    S. Albeverio, F. Gesztesy, R. Hiegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin (1988).zbMATHGoogle Scholar
  23. 23.
    E. C. Titchmarsh, Eigenfunction Expansions Assosiated with Second-Order Differential Equations. Part 2, Clarendon Press, Oxford (1958).Google Scholar
  24. 24.
    V. P. Maslov and L. D. Faddeev, in: Mathematical Library Handbook (Functional Analysis), S. G. Krein, ed. [in Russian], Nauka, Moscow (1964).Google Scholar
  25. 25.
    Yu. M. Berezansky, Eigenfunction Expansions Associated with Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  26. 26.
    T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin-Heidelberg-New-York (1966).zbMATHGoogle Scholar
  27. 27.
    G. E. Shilov, Mathematical Analysis. Second Special Course [in Russian], Nauka, Moscow (1965).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.P. N. Lebedev Institute of Physics of the Russian Academy of SciencesRussia
  2. 2.São Paulo UniversityBrasil

Personalised recommendations