Advertisement

Russian Journal of Marine Biology

, Volume 31, Issue 1, pp 43–52 | Cite as

Carbonate system of the Razdolnaya River estuary (Amur Bay, Sea of Japan)

  • P. Ya. Tishchenko
  • C. S. Wong
  • T. I. Volkova
  • L. M. Gramm-Osipov
  • V. K. Johnson
  • O. V. Dudarev
  • V. I. Zvalinskii
  • A. P. Nedashkovskii
  • G. Yu. Pavlova
  • R. V. Chichkin
  • S. G. Sagalaev
  • O. V. Shevtsova
  • E. M. Shkirnikova
Biogeochemistry

Abstract

Two methods, the total alkalinity measurement by Bruevich [4] and pH measurement in a cell without liquid junction [11], were suggested for study of the carbonate system of estuaries. Based on new measurements, the empirical equations were obtained for the first and second seawater concentration constants of carbonic acid for the ranges of salinity 0–40‰ and temperatures 0–30°C. Applying the constants and above methods, we studied the carbonate system of the Razdol’naya River-Amur Bay estuary in two expeditions of July 2001, the first in a period of average water level and the second after a flood. In the latter survey, extremely low values (∼60 µatm) of pCO2 (carbon dioxide partial pressure) were recorded in the seaward part of the estuary and extremely high (∼ 13 300 µatm) were noted in the river. High pCO2 in the surface water was caused by intense bacterial activity, and low levels were caused by phytoplankton bloom. The nonconservative behavior of the total alkalinity and dissolved inorganic carbon was revealed in the estuary. Based on the data of the carbonate system, the production/destruction of organic matter was assessed.

Key words

estuary carbonate system primary production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Alekin, O.A. and Lyakhin, Yu.I., Concerning Principles of Oversaturation of Seawater by Calcium, Dokl. AN SSSR, 1968, vol. 178, no.1, pp. 191–194.Google Scholar
  2. 2.
    Anikiev, V.V., Korotkoperiodnye geohimicheskie protsessy i zagryaznenie okeana (Short-term Geochemical Processes and Ocean Pollution), Moscow: Nauka. 1987.Google Scholar
  3. 3.
    Anikiev, V.V. and Shevtsov, O.V., Factor Analysis of Daily Hydrochemical Regime in Mixing Zone of River and Sea Waters (Razdol’naya River—Amursky Bay, the Sea of Japan), Vodn. Resursy, 1995, vol. 26, no.6, pp. 715–725.Google Scholar
  4. 4.
    Bruevich, S.V, Instruktsiya po proizvodstvu khimicheskih issledovanii morskoi vody (Manual on Conduction of Chemical Study of Seawater), Moscow: Izd-vo Glavsevmorputi. 1944.Google Scholar
  5. 5.
    Veideman, E.L., Cherkashin, S.A., and Scheglov, V.V., Diagnostics of State of Coastal Water Areas: Some Problems and Results, Izv. TINRO, 2001, vol. 128, Pt. III, pp. 1036–1049.Google Scholar
  6. 6.
    Lapin, I.A., Anikiev V.V., Vinnikov Yu.A., et al., Biogeochemical Aspects of Behavior of Dissolved Organic Matter in the Razdol’naya River—Amursky Bay estuary, the Sea of Japan, Okeanologiya, 1990, vol. 30, no.2, pp. 234–240.Google Scholar
  7. 7.
    Lisitsyn, A.P., Lavinnaya sedimentatsiya i pereryvy v osadkonakoplenii v moryakh i okeanakh (Avalanche Sedimentation and Breaks in Deposit Accumulation in Seas and Oceans), Moscow: Nauka, 1988.Google Scholar
  8. 8.
    Makkaveev, P.N., Dissolved Inorganic Carbon in Waters of the Kara Sea and Mouthes of the Ob and Yenisei Rivers, Okeanologiya, 1994, vol. 34, pp. 668–672.Google Scholar
  9. 9.
    Pavlova, G.Yu., Karbonatnaya sistema kak indikator biogeohimicheskikh protsessov v okeane (Carbonate System as Marker of Biogeochemical Processes in the Ocean), Abstract of Cand. Sci. Dissertation, Vladivostok, DVGU, 2001.Google Scholar
  10. 10.
    Stonik, I.V. and Orlova, T.Yu., Summer-Autumn Phytoplankton in the Amursky Bay, the Sea of Japan, Biol. Morya, 1998, vol. 24, no.4, pp. 205–211.Google Scholar
  11. 11.
    Tishchenko, P.Ya., Standartization of pH Measurements Based of the Theory of Ion Interaction. TRIS buffer, Izv. AN SSSR. Ser. Khim., 2000, vol. 49, no.4, pp. 676–680.Google Scholar
  12. 12.
    Tishchenko, P.Ya., Wong C.S., Pavlova, G.Yu., et al., Measurement of Seawater pH Applying the Cell without Liquid Junction, Okeanologiya, 2001, vol. 41, no.6, pp. 849–859.Google Scholar
  13. 13.
    Tishchenko, P.Ya., Chichkin, R.V., Ilyina, E.M., and Wong, C.S., pH Measurement in Estuaries Applying the Cell without Liquid Junction, Okeanologiya, 2002, vol. 42, no1, pp. 32–41.Google Scholar
  14. 14.
    Cai, W.-J., Pomeroy L.R., Moran M.A., and Wang, Y., Oxygen and Carbon Dioxide Mass Balance for the Estuarine-intertidal Marsh Complex of Five Rivers in the Southeastern U.S., Limnol. Oceanogr., 1999, vol. 44, no.3, pp. 639–649.Google Scholar
  15. 15.
    Cai, W.-J. and Wang, Y. The Chemistry, Flux, and Sources of Carbon Dioxide in the Estuarine Waters of the Satilla and Altamaha Rivers, Georgia, Limnol. Oceanogr., 1998, vol. 42, no.4, pp. 657–668.Google Scholar
  16. 16.
    Dickson, A.G. Standard Potential of the Reaction AgCl(s)+1/2H2(g)=Ag(s)+HCl(aq), and the Standard Acidity Constant of the Ion HSO4 in Synthetic Seawater from 273.15 to 318.15°K, J. Chem. Thermodyn., 1990, vol. 22, pp. 113–127.Google Scholar
  17. 17.
    Dickson, A.G. and Goyet, C., Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea water. Version 2. SOP-6. 1994.Google Scholar
  18. 18.
    Harned, H.S. and Davis, R., The Ionization Constant of Carbonic Acid in Water and the Solubility of Carbon Dioxide in Water and Aqueous Salt Solutions from 0 to 50°, J. Amer. Chem. Soc., 1943, vol. 65, pp. 2030–2037.Google Scholar
  19. 19.
    Harned, H.S. and Scholes, S.R., The Ionization Constants of HCO3 from 0 to 50°C, J. Amer. Chem. Soc., 1941, vol. 63, pp. 1706–1709.Google Scholar
  20. 20.
    Herczeg, A.L., Broecker, W.S., Anderson, R., and Schiff, S.L., A New Method for Monitoring Temporal Trends in the Acidity of Fresh Waters, Nature, 1985, vol. 315, pp. 133–135.Google Scholar
  21. 21.
    Johnson, K.S., Pytkowicz, R.M., and Wong, C.S., Biological Production and the Change of Oxygen and Carbon Dioxide Across the Sea Surface in Stuart Channel, British Columbia, Limnol. Oceanog., 197, vol. 24, pp. 474–484.Google Scholar
  22. 22.
    Kaul, L.W. and Froelich, P.N., Modeling Estuarine Nutrient Geochemistry in a Simple System, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1417–1433.Google Scholar
  23. 23.
    Lamb, M.F., Sabine, C.L., Feely, R.A., et al., Consistency and Synthesis of Pacific Ocean CO2 Survey Data, Deep-Sea Res., II, 2002, vol. 49, pp. 21–58.Google Scholar
  24. 24.
    Mehrbach, C., Culberson, C.H., Hawley, J.E., and Pytkowicz, R.M., Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric Pressure, Limnol. Oceanogr., 1973, vol. 18, pp. 897–907.Google Scholar
  25. 25.
    Millero, F., Thermodynamics of the Carbon Dioxide System in the Oceans, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 661–677.Google Scholar
  26. 26.
    Poisson, A., Culkin, F., and Ridout, P., Intercomparison of CO2 Measurements, Deep-Sea Res., 1990, vol. 37, no.10, pp. 1647–1650.Google Scholar
  27. 27.
    Rashid M.A. Geochemistry of Marine Humic Compounds, N.Y., Berlin: Springer-Verlag, 1985.Google Scholar
  28. 28.
    Raymond, P.A. and Bauer, J.E., Atmospheric CO2 Evasion, Dissolved Inorganic Carbon Production, and Net Heterotrophy in the York River Estuary, Limnol. Oceanogr., 2000, vol. 45, pp. 1707–1717.Google Scholar
  29. 29.
    Tsunogai, S., Nishimura, M., and Nakaya, S. Complexometric Titration of Calcium in the Presence of Larger Amounts of Magnesium, Talanta, 1968, vol. 15, pp. 385–390.Google Scholar
  30. 30.
    Walsh, J.J., Importance of Continental Margins in the Marine Biogeochemical Cycling of Carbon and Nitrogen, Nature, 1991, vol. 350, pp. 53–55.Google Scholar
  31. 31.
    Weiss, R.F., Carbon Dioxide in Water and Seawater: the Solution of a Non-ideal Gas, Mar. Chem., 1974, vol. 2, pp. 203–215.Google Scholar
  32. 32.
    Zuenko, Yu., Selina, M., and Stonik, I., On conditions of Phytoplankton Blooms in Coastal Waters of the Northwestern Japan Sea, PICES XI, Abstracts, 2002, pp. 75.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • P. Ya. Tishchenko
    • 1
  • C. S. Wong
    • 2
  • T. I. Volkova
    • 1
  • L. M. Gramm-Osipov
    • 1
  • V. K. Johnson
    • 2
  • O. V. Dudarev
    • 1
  • V. I. Zvalinskii
    • 1
  • A. P. Nedashkovskii
    • 1
  • G. Yu. Pavlova
    • 1
  • R. V. Chichkin
    • 1
  • S. G. Sagalaev
    • 1
  • O. V. Shevtsova
    • 1
  • E. M. Shkirnikova
    • 1
  1. 1.Pacific Oceanological Institute of the Far East DivisionRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of Oceanological SciencesSydneyCanada

Personalised recommendations