Advertisement

Russian Journal of Marine Biology

, Volume 30, Supplement 1, pp S22–S33 | Cite as

New ideas on the origin of bilateral animals

  • V. V. Malakhov
Invertebrate Zoology

Abstract

Comparative anatomy and embryology provide impressive evidence that the ventral side of all Bilateria (except Chordata) originates from the blastoporal surface, while the mouth and anus develop, respectively, from the anterior and posterior extremities of an elongated blastopore. From the point of view of paleontology, some Vendian multicellular animals represent transitional forms between Radiata and Bilateria. Vendian Bilateria are metameric organisms with a symmetrical or asymmetrical arrangement of segments; they can be considered as bilaterally symmetrical coelenterates crawling on the oral surface. In the recent Cnidaria, homologues of the genes “Brachyury,” “goosecoid” and “fork head” are expressed around the mouth. In the recent Bilateria these genes are expressed along the elongated blastopore and around the mouth and anus. These data corroborate the validity of the idea of amphistomy and the homology between the ventral surface in Bilateria and oral disk in coelenterates. It is supposed that the ancestors of Bilateria were crawling on the oral surface (=ventral side) and gave rise to both Fanerozoic Cnidaria and triploblastic Bilateria. This allows us to suggest the origin of Bilateria from Vendian bilaterally symmetrical coelenterates with numerous metameric pockets of the gastral cavity. Such ancestors gave rise to both Cnidaria and Bilateria. Apparently the primary Bilateria were complicated organisms having a coelom and segmentation, which allows us to explain the great diversity of highly organized organisms (arthropods, mollusks, and others) in the Cambrian era. An idea is proposed that Ctenophora are the only group of recent Eumetazoa that retain primary axial symmetry.

Key words

bilaterally symmetrical animals Bilateria Vendian period homeobox genes coelom metamerism evolution 

REFERENCES

  1. 1.
    Aleshin, V.V., Petrov, N.B. 2002Molecular evidences of regress in the evolution of multicellular animalsZhurn. Obshch. Biol.63195208Google Scholar
  2. 2.
    Beklemishev, V.N. 1944Osnovy sravnitel’noi anatomii bespozvonochnykhSovetskaya NaukaMoscow(The Foundations of Comparative Anatomy of Invertebrates)Google Scholar
  3. 3.
    Beklemishev, V.N. 1964PromorphologyOsnovy sravnitel’noi anatomii bespozvonochnykhNaukaMoscow(The Foundations of Comparative Anatomy of Invertebrates)Google Scholar
  4. 4.
    Vladychenskaya, N.S., Kedrova, O.S., Milyutina, I.A.,  et al. 1995Position of the Phylum Placozoa in the System of Multicellular Animals According the Results of Comparisons of Sequences in the 18S rRNADokl. RAN34413Google Scholar
  5. 5.
    Dogel’, V.A. 1954Oligomerizatsiya gomologichnykh organov kak odin iz glavnykh putei evolyutsii zhivotnykhIzdatel’stvo LGULeningrad(Oligomerization of Homologous Organs as One of Major Pathways in the Evolution of Animals)Google Scholar
  6. 6.
    Ivanov, A.V. 1976Relationships Between Protostomia and Deuterostomia and the System of AnimalsZool. Zhurn.5511251137Google Scholar
  7. 7.
    Ivanov, A.V., Mamkaev, Yu.V. 1973Resnichnye chervi (Turbellaria), ikh proiskhozhdenie i evolyutsiya. Filogeneticheskie ocherkiNaukaLeningrad(Ciliated Worms (Turbellaria), Their Origin and Evolution. Phylogenetic Essays)Google Scholar
  8. 8.
    Ivantsov, A.Yu. 2001Vendia and Other Pre-Cambrian “Arthropods”Paleontol. Zhurn.4310Google Scholar
  9. 9.
    Ivantsov, A.Yu., Malakhovskaya, Ya.E. 2002Giant Traces of Vendian AnimalsDokl. RAN385328386Google Scholar
  10. 10.
    Ivantsov, A.Yu. and Fedonkin, M.A., Traces of Independent Movement—The Conclusive Proof of Animal Nature of Ediacaran Animals, Evolyutsiya zhizni na Zemle (Evolution of Life on the Earth), Mater. II Internat. Symp., November 12–15, 2001, Tomsk, 2001, pp. 133–137.Google Scholar
  11. 11.
    Malakhov, V.V. 1977The Problem of General Pattern in Different Groups of Deuterostomate AnimalsZhurn. Obshch. Biol.38485499Google Scholar
  12. 12.
    Malakhov, V.V., Temereva, E.N. 1999Embryonic Development in the Phoronid Phoronis ijimai (Lophophorata, Phoronida): Two Sources of Coelomic MesodermDokl. RAN365574576Google Scholar
  13. 13.
    Malakhov, V.V., Temereva, E.N. 2000Embryonic Development in the Phoronid Phoronis ijimaiBiol. Morya26391399Google Scholar
  14. 14.
    Sokolov, B.S. 1997Ocherki stanovleniya vendaKMK Scientific Press Ltd.Moscow(Essays on the Formation of the Vendian)Google Scholar
  15. 15.
    Fedonkin, M.A., The White Sea Biota of the Vend (Pre-Cambrian Skeletonless Fauna of the North of the Russian Platform, Tr. Geol. In- ta AN SSSR, 1981, issue 342, pp. 3–100.Google Scholar
  16. 16.
    Fedonkin, M.A. 1983The Organic World of the VendianItogi nauki i tekhniki123127(Advances in Science and Tech-nique), ser. Stratigraphy and PaleontologyGoogle Scholar
  17. 17.
    Fedonkin, M.A. 1984Promorphology of Vendian RadialiaStratigrafiya i paleontologiya drevneishego fanerozoyaNaukaMoscow3057(Stratigraphy and Paleontology of the Most Ancient Fanerozoic)Google Scholar
  18. 18.
    Fedonkin, M.A. 1985Promorphology of Vendian Bilateria and the Problem of the Origin of Metamerism in ArticulataProblematiki pozdnego dokembriya i paleozoyaNaukaMoscow7991(Problems of the late Pre-Cambrian and Paleozoic), (Tr. In-ta Geol. i Geofiz. Sib. Otd. AN SSSR, issue 632)Google Scholar
  19. 19.
    Fedonkin, M.A. 1987Besskeletnaya fauna venda i ee mesto v evolyutsii MetazoaNaukaMoscow(Skeletonless Fauna of the Vendian and Its Place in the Evolution of Metazoa)Google Scholar
  20. 20.
    Fedonkin, M.A. 1997Global Evens in the Proterozoic and the Formation of Proterozoic Biosphere (On the Current State on the Problem)Informatsionnye materialy o deyatel’nosti Nauchnogo soveta po problemam paleobiologii i evolyutsii organicheskogo mira za 1996 g.Izdatel’stvo Paleontologicheskogo Instituta RANMoscow3953(Information About the Activities of the Scientific Council on the Problems of Paleobiology and Evolution of the Organic World for 1996)Google Scholar
  21. 21.
    Fedonkin, M.A., A Cold Down of the Animal Life, Priroda, 2000, no. 9, pp. 3–11.Google Scholar
  22. 22.
    Adelman, H.B. 1922The Significance of the Prechordal PlateAmer. J. Anat.3155101Google Scholar
  23. 23.
    Ang, S.L., Wierda, A., Wong, D.,  et al. 1993The Formation and Maintenance of the Definitive Endoderm Lineage in the Mouse: Involvement of HNF3/forkhead ProteinsDevelopment11913011315PubMedGoogle Scholar
  24. 24.
    Arendt, D., Nubler-Jung, K. 1997Dorsal or Ventral: Similarities in the Fate Maps and Gastrulation Patterns in Annelids, Arthropods and ChordatesMech. Dev.61721Google Scholar
  25. 25.
    Artinger, M., Blitz, I., Inoue, K.,  et al. 1997Interaction of Goosecoid and Brachyury in Xenopus Mesoderm PatterningMech. Dev.65187196Google Scholar
  26. 26.
    Bassham, S., Postlethwait, J. 2000Brachyury (T) Expression in Embryos of a Larvacean urochordate, Oikopleura dioica, and the Ancestral Role of TDev. Biol.220322332Google Scholar
  27. 27.
    Beklemischev, V., On the Relationship of the Turbellaria to the Other Groups of the Animal Kingdom, The Lower Metazoa, Univ. of Calif. Press, 1963, pp. 324–344.Google Scholar
  28. 28.
    Beneden, E. 1891Recherches sur le development des Arachnactis. Contribution a la morphologie de CerianthidesArch. Biol. (Paris)11114146Google Scholar
  29. 29.
    Biggelaar, J.A. 1977Development of Dorsoventral Polarity and Mesentoblast Determination in Patella vulgataJ. Morphol.154157186Google Scholar
  30. 30.
    Boyer, B.C., Henry, J.J., Martindale, M.Q. 1998The Cell Lineage of a Polyclad Turbellarian Embryo Reveals Close Similarity to Coelomic SpiraliansDev. Biol204111123Google Scholar
  31. 31.
    Bresslau, E., Reisinger, E. 1933Plathelminthes. Allgemeine Einleitung zur Naturgeschichte der PlathelminthesHandb. Zool.23451Google Scholar
  32. 32.
    Broun, M., Bode, H.R. 2002Characterization of the Head Organizer in HydraDevelopment129875884Google Scholar
  33. 33.
    Broun, M., Sokol, S., Bode, H.R. 1999Cngsc, a Homologue of goosecoid, Participates in the Patterning of the Head, and Is Expressed in the Organizer Region of HydraDevelopment12652455254Google Scholar
  34. 34.
    Christen, B., Slack, J.M. 1999Spatial Response to Fibroblast Growth Factor Signaling in Xenopus EmbryosDevelopment126119125Google Scholar
  35. 35.
    Codreanu, R. 1970Grands problemes controverses de l’evolution phylogenetique des MetazoairesAnn. Biol. (Paris)9671709Google Scholar
  36. 36.
    Collins, A.G. 1998Evaluating Multiple Alternative Hypotheses for the Origin of Bilateria: An Analysis of 18S rRNA Molecular EvidenceProc. Natl. Acad. Sci. USA.951545815463Google Scholar
  37. 37.
    Collins, A.G., Valentine, J.W. 2001Defining Phyla: Evolutionary Pathways to Metazoan Body PlansEvol. Dev.3432442Google Scholar
  38. 38.
    Croce, J., Lhomond, G., Gache, C. 2001Expression Pattern of Brachyury in the Development of the Sea Urchin Paracentrotus lividusDev. Genes Evol.211617619Google Scholar
  39. 39.
    Dewel, R.A. 2000Colonial Origin for Eumetazoa: Major Morphological Transitions and the Origin of Bilaterian ComplexityJ. Morph.2433574Google Scholar
  40. 40.
    Dewel, R.A. and Budd, G.E., Origin of Coelomate Bilaterians From a Diploblastic Colonial “Cnidarians”: Implications for Interpretation of the Ediacaran Fauna and the Early History of Metazoans, Geol. Soc. Ann. Meet., 1998, vol. 30, p. A232.Google Scholar
  41. 41.
    Dzik, J., Ivantsov, A.Y. 1999An Asymmetric Segmented Organism From the Vendian of Russia and the Status of the DipleurozoaHist. Biol.13255268Google Scholar
  42. 42.
    Dzik, J., Ivantsov, A.Y. 2002Internal Anatomy of a New Precambrian Dickinsoniid Dipleurozoan from Northern RussiaN. Jb. Geol. Paleont. Mh.7385396Google Scholar
  43. 43.
    Fedonkin, M.A., Cold Water Cradle of Animal Life, Ecosystem Evolution, Abstr. Int. Symp. Moscow. Sept. 26–30, 1995, Moscow, 1995, pp. 123–124.Google Scholar
  44. 44.
    Fedonkin, M.A. 1998Metameric Features in the Vendian MetazoansItal. J. Zool.681117Google Scholar
  45. 45.
    Fedonkin, M.A., Waggoner, B.M. 1997The Late Precambrian Fossil Kimberella is a Mollusc-Like Bilaterian OrganismNature338868871Google Scholar
  46. 46.
    Filosa, S., Rivera-Perez, J.A., Gomez, A.P.,  et al. 1997Goosecoid and HNF-3beta Genetically Interact to Regulate Neural Tubepatterning During Mouse EmbryogenesisDevelopment12428432854PubMedGoogle Scholar
  47. 47.
    Finnerty, J.R., Martindale, M.Q. 1997Homeoboxes in Sea Anemones (Cnidaria: Anthozoa): A PCR-based Survey of Nematostella vectensis and Metridium senileBiol. Bull.1936276Google Scholar
  48. 48.
    Finnerty, J.R., Paulson, D., Burton, P., Martindale, M.Q. 2003Early Evolution of a Homeobox Gene: The Parahox Gene Gsx in the Cnidaria and BilateriaEvol. Dev.5331345Google Scholar
  49. 49.
    Freeman, G., Martindale, M.Q. 2002The Origin of Mesoderm in PhoronidsDev. Biol.252301311Google Scholar
  50. 50.
    Graff, L., von., Die Organisation der Turbellaria Acoela, Leipzig, 1891.Google Scholar
  51. 51.
    Halanych, K.M., Passamaneck, Y. 2001A Brief Review of Metazoan Phylogeny and Future Prospects in HoxResearchAmer. Zool.41629639Google Scholar
  52. 52.
    Henry, J.J., Martindale, M.Q. 1998Conservation of the Spiralian Development Program: Cell Lineage of the NemerteanCerebratulus lacteus, Dev. Biol.201253269Google Scholar
  53. 53.
    Hyman, L.H., The Invertebrates, vol. 2: Plathyhelminthes and Rhynchocoela. The Acoelomate Bilateria, New York; Toronto, 1951.Google Scholar
  54. 54.
    Jagersten, G. 1955On the Early Phylogeny of the Metazoa. The Bilaterogastraea-TheoryZool. Bidr. Uppsala30321354Google Scholar
  55. 55.
    Jagersten, G. 1959Further Remarks on the Early Phylogeny of the MetazoaZool. Bidr. Uppsala3379108Google Scholar
  56. 56.
    Kiecker, C., Niehrs, C. 2001The Role of Prechordal Mesoderm in Neural PatterningCurr. Opin. Neurobiol.112733Google Scholar
  57. 57.
    Kim, J., Kim, W., Cunningham, C.M. 1999A New Perspective on Lower Metazoan Relationships from 18S rDNA SequencesMol. Biol. Evol.16423447Google Scholar
  58. 58.
    Kusch, T., Reuter, R. 1999Functions for Drosophila brachyenteron and fork head in Mesoderm Specification and Cell SignalingDevelopment12639914003PubMedGoogle Scholar
  59. 59.
    Lacalli, T.C. 1996Dorsoventral Axis Inversion: A Phylogenetic PerspectiveBioEssays18251254Google Scholar
  60. 60.
    Lameere, A. 1932Precis de zoologieDesoerLiegeGoogle Scholar
  61. 61.
    Lang, A., Die Polycladen (Seeplanarien) Fauna und Flora des Golfes von Neapel, 1884, no. 11, pp. 1–688.Google Scholar
  62. 62.
    Lartillot, N., Gour, M., Adoutte, A. 2002Expression Patterns of fork head and goosecoid Homologues in the Mollusk Patella vulgata Supports the Ancestry of the Anterior Mesentoderm Across BilateriaDev. Gen. Evol.212551561Google Scholar
  63. 63.
    Latinkic, B.V., Smith, J.C. 1999Goosecoid and Mix.1 Repress Brachyury Expression and Are Required for Head Formation in XenopusDevelopment12617691779Google Scholar
  64. 64.
    Lillie, F.R. 1895The Embryology of the UnionidaeJ. Morphol.101100Google Scholar
  65. 65.
    Marcus, E. 1958On the Evolution of the Animal PhylaQuart. Rev. Biol.332458Google Scholar
  66. 66.
    Martinez, D.E., Dirksen, M.L., Bode, P.M.,  et al. 1997Budhead, a fork Head/HNF-3 Homologue, Is Expressed During Axis Formation and Head Specification in HydraDev. Biol.192523536Google Scholar
  67. 67.
    Masterman, A.T. 1898On the Theory of Archimeric Segmentation and Its Bearing upon the Phyletic Classification of the CoelomataProc. Roy. Soc.22270310Google Scholar
  68. 68.
    Monaghan, A.P., Kaestner, K.H., Grau, E., Schutz, G. 1993Postimplantation Expression Patterns Indicate a Role for the Mouse forkhead/HNF-3 Alpha, Beta and Gamma Genes in Determination of the Definitive Endoderm, Chordomesoderm and NeuroectodermDevelopment119567578PubMedGoogle Scholar
  69. 69.
    Naef, A. 1927Notizen zur Morphologie und Stammesgeschichte der Wirbeltiere.14. Blastoporusverschluss und Schwanzknospenanlage bei den AnamnieneirnZool. Jahrb. Abt. Anat.49357390Google Scholar
  70. 70.
    Nielsen, C. 1999Origin of the Chordate Central Nervous System and the Origin of ChordatesDev. Genes Evol.209198205Google Scholar
  71. 71.
    Nubler-Jung, K., Arendt, D. 1994Is Ventral in Insects Dorsal in Vertebrates?Roux’s Arch. Dev. Biol.203357366Google Scholar
  72. 72.
    Remane, A., Die Entstehung der Metamerie der Wirbellosen, Verh. Deutsch. Zool. Ges., 1950 (1949). S. 16–23.Google Scholar
  73. 73.
    Rieger, R.M. 1994The Biphasic Life Cycle—A Central Theme of Metazoan EvolutionAm. Zool.34484491Google Scholar
  74. 74.
    Ruiz i Altaba, A., Jessell, T.M. 1992Pintallavis, a Gene Expressed in the Organizer and Midline Cells of a Frog Embryo: Involment in the Development of Neural AxisDevelopment1168193Google Scholar
  75. 75.
    Salvini-Plawen, L. 1968Die Funktions-Coelomtheorie in der Evolution der MolluskenSyst. Zool.17192208Google Scholar
  76. 76.
    Schierwater, B., Murtha, M., Dick, M.,  et al. 1991Homeoboxes in CnidariansJ. Exp. Zool.260413416Google Scholar
  77. 77.
    Scholz, C.B., Technau, U. 2003The Ancestral Role of Brachyury: Expression of NemBra1 in the Basal Cnidarian Nematostella vectensis (Anthozoa)Dev. Genes Evol.212563570Google Scholar
  78. 78.
    Sedgwick, A. 1884On the Origin of Metameric Segmentation and Some Other Morphological QuestionsQuart. J. Microsc. Sci.244382Google Scholar
  79. 79.
    Seifert, R., Jacob, M., Jacob, H.J. 1993The Avian Prechordal Head Region: A Morphological StudyJ. Anat.1837589Google Scholar
  80. 80.
    Siewing, R. 1967Discussions beitrag zur Phylogenie der CoelomatenZool. Anz.179132176Google Scholar
  81. 81.
    Siewing, R. 1980Das ArchicoelomatenkonceptZool. Jahrb.103439482Google Scholar
  82. 82.
    Tagawa, K., Humpreys, T., Satoh, N. 1998Novel Pattern of Brachyury Gene Expression in Hemichordate EmbryosMech. Dev.75139143Google Scholar
  83. 83.
    Takada, N., Goto, T., Satoh, N. 2002Expression Pattern of the Brachyury Gene in the Arrow Worm Paraspadella gotoi (Chaetognatha)Genesis32240245Google Scholar
  84. 84.
    Technau, U. 2001Brachyury, the Blastopore and Evolution of the MesodermBioAssays23788794Google Scholar
  85. 85.
    Technau, U., Bode, H.R. 1999HyBra1, a Brachyury Homologue, Acts During Head Formation in HydraDevelopment1269991010Google Scholar
  86. 86.
    Ulrich, W., Vorschlaege zu einer Revision der Grosseinteilung des Tierreichs, Verh. Deutsch. Zool. Ges. Marburg, 1951(1950), pp. 215–271.Google Scholar
  87. 87.
    Weigel, D., Jurgens, G., Kuttner, F.,  et al. 1989The Homeotic Gene fork head Encodes a Nuclear Protein and Is Expressed in the Terminal Regions of the Drosophila EmbryoCell57645658Google Scholar
  88. 88.
    Wierzejski, A. 1905Embryologie von Physa fontinalis L.Z. Wiss. Zool.83502706Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • V. V. Malakhov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations