Russian Journal of Genetics

, Volume 41, Issue 8, pp 897–906 | Cite as

Genetic Divergence of Chars of the Genus Salvelinus from Kronotsky Lake (Kamchatka Peninsula)

  • E. A. Salmenkova
  • V. T. Omel’chenko
  • O. A. Radchenko
  • N. V. Gordeeva
  • G. A. Rubtsova
  • N. S. Romanov
Plant Genetics


Chars of the genus Salvelinus, inhabiting lakes and lake-river systems, comprise morphological and ecological forms whose taxonomic status is under dispute. In the present work, we have examined genetic variation and divergence in various chars from the Kronotsky lake basin: the lacustrine chars (white, nose, and longhead) and riverine Dolly Varden Salvelinus malma. The study was conducted using analysis of allozyme and microsatellite loci, myogens, RAPD, and restriction analysis of two mtDNA segments. The estimates of heterozygosity at allozyme and microsatellite loci were similar to the corresponding parameters in populations of northern Dolly Varden and Arctic char. Heterozygote deficit was recorded in both samples of separate forms, and in the total sample of all chars from Kronotsky Lake. For allozyme and microsatellite loci, appreciable genetic differentiation among the samples of different char forms was found, which was comparable to that among the spatially isolated populations of northern Dolly Varden. This result indicates reproductive isolation among the char forms examined. However, this isolation is not complete, because no fixed differences between the forms by any of the genetic systems analyzed were found. The genetic differentiation among different forms of lacustrine chars, which corresponds to the interpopulation rather than interspecific level, is thought to be explained by their comparatively recent divergence.


Genetic Differentiation Microsatellite Locus Reproductive Isolation Lake Basin Genetic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savvaitova, K.A., Arkticheskie gol’tsy (struktura populyatsionnykh sistem, perspektivy khozyaistvennogo ispol’zovaniya) (Arctic Chars: The Population System Structure and Prospects of Commercial Use), Moscow: Agropromizdat, 1989.Google Scholar
  2. 2.
    Alekseev, S.S., Pichugin, M.Yu., and Samusenok, V.P., The Diversity of Arctic Chars from Transbaikalia in Meristic Traits, Their Position in the Salvelinus alpinus Complex, and the Problem of the Origin of Sympatric Forms, Vopr. Ikhtiol., 2000, vol. 40, no.3, pp. 293–311.Google Scholar
  3. 3.
    Westgaard, J.I., Klemetsen, A., and Knudsen, R., Genetic Differences Between Two Sympatric Forms of Arctic Charr Confirmed by Microsatellite DNA, J. Fish. Biol., 2004, vol. 65, pp. 1185–1191.CrossRefGoogle Scholar
  4. 4.
    Viktorovsky, R.M., Mekhanizmy vidoobrazovaniya u gol’tsov Kronotskogo ozera (Speciation Mechanisms in Chars from Kronotsky Lake), Moscow: Nauka, 1978.Google Scholar
  5. 5.
    Glubokovskii, M.K., Evolyutsionnaya biologiya lososevykh ryb (The Evolutionary Biology of Salmonid Fishes), Moscow: Nauka, 1995.Google Scholar
  6. 6.
    Chereshnev, I.A., Volobuev, V.V., Shestakov, A.V., and Frolov, S.V., Lososevidnye ryby Severo-Vostoka Rossii (Salmonid Fishes in the Russian North East), Vladivostok: Dal’nauka, 2002.Google Scholar
  7. 7.
    Altukhov, Yu.P. and Salmenkova, E.A., DNA Polymorphism in Population Genetics, Rus. J. Genet., 2002, vol. 38, no.9, p. 989–1008.CrossRefGoogle Scholar
  8. 8.
    Altukhov, Yu.P. and Rychkov, Yu.G., Geneticheskii monomorfizm vidov i ego vozmozhnoe biologicheskoe znachenie (Genetic Monomophism of the Species and Its Possible Biological Significance), Zh. Obshch. Biol., 1972, vol. 33, no.3, pp. 281–300.Google Scholar
  9. 9.
    Altukhov, Yu.P., Populyatsionnaya genetika ryb (Population Genetics of Fish), Moscow: Pishch. prom-st’, 1974.Google Scholar
  10. 10.
    Tsuyuki, H., Roberts, E., and Vanstone, W.E., Comparative Zone Electrophoregrams of Muscle Myogens and Blood Hemoglobins of Marine Freshwater Vertebrates and Their Application To Biochemical Systematics, J. Fish. Res., 1965, vol. 22, no.1, pp. 203–213.Google Scholar
  11. 11.
    Altukhov, Yu.P. and Abramova, A.B., Species-specific Random Amplified Monomorfic DNA, Rus. J. Genet., 2000, vol. 36, no.12., pp. 1411–1417.CrossRefGoogle Scholar
  12. 12.
    Callejas, C. and Ochando, M.D., Molecular Identification (RAPD) of the Eight Species of the Genus Barbus (Cyprinidae) in the Iberian Peninsula, J. Fish. Biol., 2001, vol. 59, pp. 1589–1599.CrossRefGoogle Scholar
  13. 13.
    Peacock, A.C., Bunting, S.L., and Queen, K.G., Serum Protein Electrophoresis in Acrylamide Gel: Patterns from Normal Human Subjects, Science, 1965, vol. 147, pp. 1451–1452.PubMedGoogle Scholar
  14. 14.
    Ridgway, G.L., Shernburne, S.W., and Lewis, R.D., Polymorphism in the Serum Esterases of Atlantic Herring, Trans. Am. Fish. Soc., 1970, vol. 9, pp. 147–151.CrossRefGoogle Scholar
  15. 15.
    Shaw, C.R. and Prasad, R., Starch Gel Electrophoresis of Enzymes-a Compilation of Recipes, Biochem. Genet., 1970, vol. 4, pp. 297–320.CrossRefPubMedGoogle Scholar
  16. 16.
    Aebersold, P.B., Winans, G.A., Teel, D.J., et al., Manual for Starch Gel Electrophoresis: A Method for the Detection of Genetic Variation, NOAA Technical Report NMFS, 1987, vol. 61, pp. 1–19.Google Scholar
  17. 17.
    Salmenkova, E.A. and Omel’chenko, V.T., Genetic Structure of Dolly Varden (Salvelinus malma Walbaum) Populations from Southeastern Sakhalin and Southern Kuril Islands, Rus. J. Genet., 2000, vol. 36, no.8, pp. 1100–1110.Google Scholar
  18. 18.
    Davis, B.J., Disc-Electrophoresis. 2. Method and Application To Human Serum Proteins, Ann. New York. Acad. Sci, 1964, vol. 121, pp. 404–427.Google Scholar
  19. 19.
    Shaklee, J.B., Allendorf, F.W., Morizot, D.C., and Whitt, G.S., Gene Nomenclature for Protein-Coding Loci in Fish, Trans. Am. Fish. Soc., 1990, vol. 119, pp. 2–15.CrossRefGoogle Scholar
  20. 20.
    Nei, M., Genetic Distance Between Populations, Am. Nat., 1972, vol. 106, pp. 283–292.CrossRefGoogle Scholar
  21. 21.
    Cavalli-Sforza, L.L. and Edwards, A.W.F., Phylogenetic Analysis: Models and Estimation Procedures, Am. J. Hum. Genet., 1967, vol. 19, pp. 233–257.PubMedGoogle Scholar
  22. 22.
    Swofford, D.L. and Selander, B.B., BIOSYS-1; A PC Program for the Analysis of Allelic Variations in Population Genetics and Biochemical Systematics, release 1.7, Urbana: Univ. Illinois, 1989.Google Scholar
  23. 23.
    Zaykin, D.V. and Pudovkin, A.I., Two Programs To Estimate Significance of Chi-Square Values Using Pseudo-Probability Tests, J. Heredity, 1993, vol. 84, p. 152.Google Scholar
  24. 24.
    Radchenko, O.A. and Malyarchuk, B.A., Genetis differentiation of the Dolly Varden and Taranetz char populations based on restriction endonuclease analyses of the cutochrome b gene, Rus. J. Genet, 1999, vol. 35, no.8, pp. 947–951.Google Scholar
  25. 25.
    Zhivotovskii, L.A., Statistical Methods of Gene Frequency Analysis in Natural Populations, in Itogi nauki i tekhniki (Achievements in Science and Technology), Moscow: VINITI, 1983, pp. 76–104.Google Scholar
  26. 26.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1982.Google Scholar
  27. 27.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1984.Google Scholar
  28. 28.
    O’Reilly, P., Hamilton, L.C., McConnell, and Wright, J.M., Rapid Detection of Genetic Variation in Atlantic Salmon (Salmo salar) by PCR Multiplexing of Dinucleotide and Tetranucleotide Microsatellites, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 2292–2298.CrossRefGoogle Scholar
  29. 29.
    Olsen, J.B., Bentzen, P., and Seeb, J.E., Characterization of Seven Microsatellite Loci Derived from Pink Salmon, Mol. Ecol., 1998, vol. 7, pp. 1087–1089.PubMedGoogle Scholar
  30. 30.
    Estoup, A., Presa, P., Krieg, F., et al., (CT)n and (GT)n Microsatellites: A New Class of Genetic Markers for Salmo trutta L. (brown trout), Heredity, 1993, vol. 71, pp. 488–496.PubMedGoogle Scholar
  31. 31.
    Slettan, A., Olsaker, I., and Oystein, L., Segregation Studies and Linkage Analysis of Atlantic Salmon Microsatellites Using Haploid Genetics, Heredity, 1997, vol. 78, pp. 620–627.CrossRefPubMedGoogle Scholar
  32. 32.
    Small, M.P., Beacham, T.D., Withler, R.E., and Nelson, R.J., Discriminating Coho Salmon (Oncorhynchus kisutch) Populations within the Fraser River, British Columbia, Using Microsatellite DNA Markers, Mol. Ecol., 1998, vol. 7, pp. 141–155.CrossRefGoogle Scholar
  33. 33.
    Goudet, J., FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices, Version, 2001, Scholar
  34. 34.
    Raymond, M. and Rousset, F., GENEPOP (3.4): Population Genetics Software for Exact Tests and Ecumenicism, J. Heredity, 1995, vol. 86, pp. 248–249.Google Scholar
  35. 35.
    Weir, B., Analiz geneticheskikh dannykh (Analyses of Genetic Data), Moscow: Mir, 1995.Google Scholar
  36. 36.
    Weir, B.S. and Cockerham, C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, vol. 38, pp. 117–125.Google Scholar
  37. 37.
    Rousset, F., Equilibrium Values of Measures of Population Subdivision for Stepwise Mutation Processes, Genetics, 1996, vol. 142, pp. 1357–1362.PubMedGoogle Scholar
  38. 38.
    Radchenko, O.A., Genetic Differentiation Inferred from Data on Restriction Analysis of Mitochondrial DNA in the Northern and Southern Forms of the Dolly Varden, Rus. J. Genet., 2002, vol. 38, no.4, p. 421–428.CrossRefGoogle Scholar
  39. 39.
    Osinov, A.G., The Northern Form of Salvelinus malma from Asia and North America: Allozyme Variation, Genetic Differentiation, and the Origin, Vopr. Ikhtiol., 2002, vol. 42, no.5, pp. 664–677.Google Scholar
  40. 40.
    Everett, R.J., Wilmot, R.L., and Krueger, C.C., Population Genetic Structure of Dolly Varden from Beaufort Sea Drainages of North Alaska and Canada, Amer. Fish. Soc. Symposium, 1997, vol. 19, pp. 240–249.Google Scholar
  41. 41.
    Gislason, D., Ferguson, M.M., Skulason, S., and Snorrason, S.S., Rapid and Coupled Phenotypic and Genetic Divergence in Icelandic Arctic Charr (Salvelinus alpinus), Canad. J. Fish. Aquat. Sci, 1999, vol. 56, pp. 2229–2234.CrossRefGoogle Scholar
  42. 42.
    Wilson, A.J., Gislason, D., Skulason, S., et al., Population Genetic Structure of Arctic Charr Salvelinus alpinus from Northwest Europe on Large and Small Spatial Scales, Mol. Ecol., 2004, vol. 13, pp. 1129–1142.CrossRefPubMedGoogle Scholar
  43. 43.
    Dynes, J., Magnan, P., Bernatchez, L., and Rodriguez, M.A., Genetic and Morphological Variation Between Two Forms of Lacustrine Brook Charr, J. Fish. Biol., 1999, vol. 54, pp. 955–972.CrossRefGoogle Scholar
  44. 44.
    Castric, V., Bernatchez, L., Belkhir, K., and Bonhomme, F., Heterozygote Deficiencies in Small Lacustrine Populations of Brook Charr Salvelinus Fontinalis Mitchill (Pisces, Salmonidae): A Test of Alternative Hypotheses, Heredity, 2002, vol. 89, pp. 27–35.CrossRefPubMedGoogle Scholar
  45. 45.
    Hedrick, P.W., Perspective: Highly Variable Loci and Their Interpretation in Evolution and Conservation, Evolution, 1999, vol. 53, no.2, pp. 313–318.Google Scholar
  46. 46.
    Mayr, E., Animal Species and Evolution, Cambridge: Harvard Univ. Press, 1963.Google Scholar
  47. 47.
    Kondrashov, A.S. and Mina, M.V., Sympatric Speciation: When Is It Possible?, Biol. J. Linn. Soc., 1986, vol. 27, pp. 201–223.Google Scholar
  48. 48.
    Dieckmann, U. and Doebili, M., On the Origin of Species by Sympatric Speciation, Nature, 1999, vol. 400, pp. 354–357.CrossRefPubMedGoogle Scholar
  49. 49.
    Streelman, J.T. and Danley, P.D., The Stages of Vertebrate Evolutionary Radiation, Trends Ecol. Evol., 2003, vol. 18, no.3, pp. 126–131.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. A. Salmenkova
    • 1
  • V. T. Omel’chenko
    • 2
  • O. A. Radchenko
    • 3
  • N. V. Gordeeva
    • 1
  • G. A. Rubtsova
    • 1
  • N. S. Romanov
    • 2
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Marine BiologyRussian Academy of SciencesVladivostokRussia
  3. 3.Institute of Biological Problems of the NorthRussian Academy of SciencesMagadanRussia

Personalised recommendations