Advertisement

Russian Journal of Genetics

, Volume 41, Issue 5, pp 518–528 | Cite as

Genomic Configuration of the Autotetraploid Oat Species Avena macrostachya Inferred from Comparative Analysis of ITS1 and ITS2 Sequences: on the Oat Karyotype Evolution during the Early Events of the Avena Species Divergence

  • A. V. Rodionov
  • N. B. Tyupa
  • E. S. Kim
  • E. M. Machs
  • I. G. Loskutov
Plant Genetics

Abstract

To examine the genomic configuration of Avena macrostachya, internal transcribed spacers, ITS1 and ITS2, as well as nuclear 5.8S rRNA genes from three oat species with AsAs karyotype (A. wiestii, A. hirtula, and A. atlantica), and those from A. longiglumis (AlAl), A. canariensis (AcAc), A. ventricosa (CvCv), A. pilosa, and A. clauda (CpCp) were sequenced. All species of the genus Avena examined represented a monophyletic group (bootstrap index = 98), within which two branches, i.e., species with A- and C-genomes, were distinguished (bootstrap indices = 100). The subject of our study, A. macrostachya, albeit belonging to the phylogenetic branch of C-genome oat species (karyotype with submetacentic and subacrocentric chromosomes), has preserved an isobrachyal karyotype, (i.e., that containing metacentric chromosomes), probably typical of the common Avena ancestor. It was suggested to classify the A. macrostachya genome as a specific form of C-genome, Cm-genome. Among the species from other genera studied, Arrhenatherum elatius was found to be the closest to Avena in ITS1 and ITS sequence. Phylogenetic relationships between Avena and Helictotrichon remain intriguingly uncertain. The HPR389153 sequence from H. pratense genome was closest to the ITS1 sequences specific to the Avena A-genomes (p-distance = 0.0237), while the p-distance between this sequence and the ITS1 of A. macrostachya reached 0.1221. On the other hand, HAD389117 from H. adsurgens was close to the ITS1 specific to Avena C-genomes (p-distance = 0.0189), while its differences from the A-genome specific ITS1 sequences reached 0.1221. It seems likely that the appearance of highly polyploid (2n = 12x-21x) species of H. pratense and H. adsurgens could be associated with interspecific hybridization involving Mediterranean oat species carrying A- and C-genomes. A hypothesis on the pathways of Avena chromosomes evolution during the early events the oat species divergence is proposed.

Keywords

Species Divergence Phylogenetic Relationship Specific Form Early Event Interspecific Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Cosson, E. and Durieu De Malsonneuve, M.C., Notes sur guelqies Graminees d’Algerie, Bull. Soc. Bot. Fr., 1855, vol. 1, pp. 1–318.Google Scholar
  2. 2.
    Guarino, L., Chadja, H., and Mokkadem, A., Collection of Avena macrostachya Bal. ex Coss. et Dur. (Poaceae) Germplasm in Algeria, Econ. Bot., 1991, vol. 45, pp. 460–466.Google Scholar
  3. 3.
    Baum, B.R. and Rajhathy, T., A Study of Avena macrostachya, Can. J. Bot., 1976, vol. 54, pp. 2434–2439.Google Scholar
  4. 4.
    Hoppe, H.-D. and Pohler, W., Successful Hybridization between Avena prostrata and Avena macrostachya, Cereal Res. Commun., 1988, vol. 16, pp. 231–235.Google Scholar
  5. 5.
    Leggett, J.M., A New Triploid Hybrid between Avena eriantha and A. macrostachya, Cereal Res. Commun., 1990, vol. 18, pp. 97–101.Google Scholar
  6. 6.
    Loskutov, I.G., Species Diversity and Breeding Potential of the Genus Avena L., Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 2003.Google Scholar
  7. 7.
    Malzew, A.I., Ovsyugi i ovsy (Wild and Cultivated Oats), Leningrad, 1930.Google Scholar
  8. 8.
    Baum, B.R., Delimitation of the Genus Avena (Gramineae), Can. J. Bot., 1968, vol. 46, pp. 121–132.Google Scholar
  9. 9.
    Baum, B.R., Classification of the Oat Species Avena (Poaceae) Using Various Taximetric Methods and an Information-Theoretic Model, Can. J. Bot., 1974, vol. 52, pp. 2241–2262.Google Scholar
  10. 10.
    Tsvelev, N.N., Zlaki SSSR (Cereals of the Soviet Union), Leningrad: Nauka, 1976.Google Scholar
  11. 11.
    Rodionova, N.A., Soldatov, V.N., Merezhko, V.E., et al., in Kul’turnaya flora. Oves (Cultivated Flora: Oat), Moscow: Kolos, 1994, vol. 2, part 3.Google Scholar
  12. 12.
    Roser, M., Patterns of Diversification in Mediterranean Oat Grasses (Poaceae: Aveneae), Lagascalia, 1997, vol. 19, pp. 101–120.Google Scholar
  13. 13.
    Roser, M., Character of Evolution of the Genus Helictotrichon (Poaceae: Aveneae) Reconsidered in View of Recent Results in Ibero-Mauritanian and Eurasian Species, Flora, 1998, vol. 193, pp. 425–447.Google Scholar
  14. 14.
    Zoshchuk, N.V., Badaeva, E.D., and Zelenin, A.V., History of Modern Chromosome Analysis: Chromosome Banding in Plants, Ontogenez, 2003, vol. 34, no.1, pp. 5–18.PubMedGoogle Scholar
  15. 15.
    Thomas, H., Cytogenetics of Avena, Oat Science and Technology, Marshall, H.G. and Sorrels, M.E., Eds., Madison, Wis.: ASA and CSSA, 1992, no. 33, pp. 473–508.Google Scholar
  16. 16.
    Leggett, J.M. and Markhand, G.S., The Genomic Configuration of Avena Revealed by GISH, Kew Chromosome Conf. IV., Brandham, P.E. and Bennett, M.D, Eds., Kew: Royal Botanic Gardens, 1995, pp. 133–139.Google Scholar
  17. 17.
    Loskutov, I.G., Interspecific Crosses in the Genus Avena L., Rus. J. Genet., 2001, vol. 37, no.5, pp. 467–475.CrossRefGoogle Scholar
  18. 18.
    Ladizinsky, G., Genetic Control of Bivalent Pairing in the Avena strigosa Polyploid Complex, Chromosoma, 1973, vol. 42, pp. 105–110.CrossRefPubMedGoogle Scholar
  19. 19.
    Katsiotis, A., Hagidimitriou, M., and Heslop-Harrison, J.S., The Close Relationship between the A and B Genomes in Avena L. (Poaceae) Determined by Molecular Cytogenetic Analysis of Total Genomic, Tandem and Dispersed Repetitive DNA Sequences, Ann. Bot., 1997, vol. 79, pp. 103–109.CrossRefGoogle Scholar
  20. 20.
    Linares, C., Ferrer, E., and Fominaya, A., Discrimination of the Closely Related A and D Genomes of the Hexaploid Avena sativa L., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 12 450–12 455.CrossRefGoogle Scholar
  21. 21.
    Jellen, E.N., C-Banding of Avena macrostachya, http://pas.byu.edu/Faculty/enj/oatsite/aventaxa.htm.Google Scholar
  22. 22.
    Hutchinson, J. and Postoyko, J., C-Banding of Avena Species, Genetic Manipulation in Plant Breeding: Proc. Int. Symp., EUCARPIA, Berlin, 1986, pp. 157–160.Google Scholar
  23. 23.
    Hsiao, C., Chatterton, N.J., Asay, K., and Jensen, K.B., Phylogenetic Relationships of 10 Grass Species: An Assessment of Phylogenetic Utility of the Internal Transcribed Spacer Region in Nuclear Ribosomal DNA in Monocots, Genome, 1994, vol. 37, pp. 112–120.PubMedGoogle Scholar
  24. 24.
    Hsiao, C., Chatterton, N.J., Asay, K., and Jensen, K.B., Molecular Phylogeny of the Pooideae (Poaceae) Based on Nuclear rDNA (ITS) Sequences, Theor. Appl. Genet., 1995, vol. 90, pp. 389–398.CrossRefGoogle Scholar
  25. 25.
    Ainouche, M.L. and Bayer, R.J., On the Origins of the Tetraploid Bromus Species (Section Bromus, Poaceae): Insights from Internal Transcribed Spacer Sequences of Nuclear Ribosomal DNA, Genome, 1997, vol. 40, pp. 730–743.PubMedGoogle Scholar
  26. 26.
    Grebenstein, B., Roser, M., Sauer, W., and Hemleben, V., Molecular Phylogenetic Relationships in Aveneae (Poaceae) Species and Other Grasses As Inferred from ITS1 and ITS2 rDNA Sequences, Plant Syst. Evol., 1998, vol. 213, pp. 233–250.Google Scholar
  27. 27.
    Wang, J.-B., Wang, C., Shi, S.-H., and Zhong, Z., Evolution of Paternal ITS Regions of Nuclear rDNA in Allopolyploid Aegilops (Poaceae) Species, Hereditas (Lund, Swed.), 2000, vol. 133, pp. 1–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Troitsky, A.V., Melekhovets, Yu.F., Rakhimova, G.M., et al., Angiosperm Origin and Early Events of Seed Plant Evolution Deduced from rRNA Sequence Comparisons, J. Mol. Evol., 1991, vol. 32, pp. 253–261.PubMedGoogle Scholar
  29. 29.
    Hershkovitz, M.A. and Lewis, L.A., Deep-Level Diagnostic Value of the rDNA ITS Region, Mol. Biol. Evol., 1996, vol. 13, pp. 1276–1295.PubMedGoogle Scholar
  30. 30.
    Chatterton, N.J., Hsiao, C., Asay, K.H., et al., Nucleotide Sequence of the Internal Transcribed Spacer Region of rDNA in the Primitive Oat Species, Avena longiglumis Durieu, Plant. Mol. Biol., 1992, vol. 20, pp. 163–164.PubMedGoogle Scholar
  31. 31.
    Moore, L.A. and Field, C.B., see http://www.ncbi.nlm.nih.gov.Google Scholar
  32. 32.
    Doyle, J.J. and Doyle, J.L., A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.Google Scholar
  33. 33.
    Gardes, M. and Brunes, T.D., ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts, Mol. Ecol., 1993, vol. 2, pp. 130–138.Google Scholar
  34. 34.
    White, T.J., Bruns, T., Lee, S., and Taylor, J., Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics, PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., San Diego: Academic, 1990, pp. 315–322.Google Scholar
  35. 35.
    Sanger, F., Niclein, S., and Coulson, A.R., DNA Sequencing with Chain-Terminating Inhibitors, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 5463–5467.PubMedGoogle Scholar
  36. 36.
    Xia, X. and Xie, Z., DAMBE: Data Analysis in Molecular Biology and Evolution, J. Hered., 2001, vol. 92, pp. 371–373.PubMedGoogle Scholar
  37. 37.
    Hemleben, V., Grebenstein, B., and Herges, H., see http://www.ncbi.nlm.nih.gov.Google Scholar
  38. 38.
    Hsaio, C. and Chatterton, N.J., see http://www.ncbi.nlm.nih.gov.Google Scholar
  39. 39.
    Jakob, S.S. and Blattner, F.R., see http://www.ncbi.nlm.nih.gov.Google Scholar
  40. 40.
    Brysting, A.K., Fay, M.F., Leitch, I.J., and Aiken, S.G., see http://www.ncbi.nlm.nih.gov.Google Scholar
  41. 41.
    Corach, D., Fernandez Souto, D., and Bernasconi, P., see http://www.ncbi.nlm.nih.gov.Google Scholar
  42. 42.
    Catalan, P., Torrecilla, P., Rodriguez, J.-A., and Olmstead, R., see http://www.ncbi.nlm.nih.gov.Google Scholar
  43. 43.
    Chiapella, J.O., see http://www.ncbi.nlm.nih.gov.Google Scholar
  44. 44.
    Charmet, G., Ravel, C., and Balfourier, F., Phylogenetic Analysis in the Festuca-Lolium Complex Using Molecular Markers and ITS rDNA Sequences, Theor. Appl. Genet., 1997, vol. 94, pp. 1038–1046.Google Scholar
  45. 45.
    Gaut, B.S., Tredway, L.P., Kubik, C., et al., see http://www.ncbi.nlm.nih.gov.Google Scholar
  46. 46.
    Kotseruba, V., Gernand, D., Meister, A., and Houben, A., Uniparental Loss of Ribosomal DNA in the Allotetraploid Grass Zingeria trichopoda (2n = 8), Genome, 2003, vol. 46, pp. 156–163.PubMedGoogle Scholar
  47. 47.
    Felsenstein, J., Confidence Limits on Phylogenesis: An Approach Using the Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.Google Scholar
  48. 48.
    Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.Google Scholar
  49. 49.
    Titov, I.I., Vorobiev, D.G., Ivanisenko, V.A., and Kolchanov, N.A., GArna: Predicting 2D Structure of RNA by Genetic Algorithm, http://www.icg.sbras.ru/rus/Resources Rus.html.Google Scholar
  50. 50.
    Suh, Y., Thien, L.B., and Zimmer, E.A., Nucleotide Sequences of the Internal Transcribed Spacers and 5.8S rRNA Gene in Canella winterana (Magnoliales; Canellaceae), Nucleic Acids Res., 1992, vol. 20, pp. 6101–6102.PubMedGoogle Scholar
  51. 51.
    Jobes, D.V. and Thien, L.B., Conserved Motif in the 5.8S Ribosomal RNA (rRNA) Gene Is a Useful Diagnostic Marker for Plant Internal Transcribed Spacer (ITS) Sequences, Plant Mol. Biol. Rep., 1997, vol. 15, pp. 326–334.Google Scholar
  52. 52.
    Goertzen, L.R., Cannone, J.J., Gutell, R.R., and Jansen, R.K., ITS Secondary Structure Derived from Comparative Analysis: Implications for Sequence Alignment and Phylogeny of the Asteraceae, Mol. Phylogenetics and Evolution, 2003, vol. 29, pp. 216–234.Google Scholar
  53. 53.
    Fitch, W.M. and Margoliash, E., Construction of Phylogenetic Trees, Science, 1967, vol. 155, pp. 279–284.PubMedGoogle Scholar
  54. 54.
    Perchuk, I.N., Loskutov, I.G., and Okuno, K., Study of the Species Diversity in Oat by Means of RAPD Analysis, Agrarn. Ross., 2002, no. 3, pp. 41–44.Google Scholar
  55. 55.
    Drossou, A., Katsiotis, A., Leggett, J.M., et al., Genome and Species Relationships in Genus Avena Based on RAPD and AFLP Molecular Markers, Theor. Appl. Genet., 2004, vol. 109, pp. 48–54.PubMedGoogle Scholar
  56. 56.
    Rajhathy, T. and Thomas, H., Chromosomal Differentiation and Speciation in Diploid Avena: III. Mediterranean Wild Populations, Can. J. Genet. Cytol., 1967, vol. 9, pp. 52–68.Google Scholar
  57. 57.
    Linares, C., Serna, A., and Fominaya, A., Chromosomal Organization of a Requence Related to LTR-Like Elements of Ty1-copia Retrotransposons in Avena Species, Genome, 1999, vol. 42, pp. 706–713.PubMedGoogle Scholar
  58. 58.
    Linares, C., Irigoyen, M.I., and Fominaya, A., Identification of C-Genome Chromosomes Involved in Intergenomic Translocation in Avena sativa L., Using Cloned Repetitive DNA Sequences, Theor. Appl. Genet., 2000, vol. 100, pp. 353–360.Google Scholar
  59. 59.
    Jellen, E.N., Phillips, R.L., and Rines, H.W., C-Banded Karyotypes and Polymorphisms in Hexaploid Oat Accessions (Avena spp.) Using Wright’s Stain, Genome, 1993, vol. 36, pp. 1129–1137.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. V. Rodionov
    • 1
  • N. B. Tyupa
    • 1
  • E. S. Kim
    • 1
  • E. M. Machs
    • 1
  • I. G. Loskutov
    • 2
  1. 1.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Vavilov Institute for Plant IndustryRussian Academy of Agricultural ScienceSt. PetersburgRussia

Personalised recommendations