Russian Journal of Genetics

, Volume 41, Issue 4, pp 402–411 | Cite as

Intratetrad mating and its genetic and evolutionary consequences

  • I. A. Zakharov
Theoretical Papers and Reviews

Abstract

Genetic characteristics of intratetrad mating, i.e., fusion of haploid products of one meiotic division, are considered. Upon intratetrad mating, the probability of homozygotization is lower than that upon self-fertilization, while heterozygosity at genes linked to the mating-type locus, which determines the possibility of cell fusion, is preserved. If the mating-type locus is linked to the centromere, the genome regions adjoining the centromeres of all chromosomes remain heterozygous. Intratetrad mating is characteristic of a number of fungi (Saccharomyces cerevisiae, Saccharomycodes ludwigii, Neurospora tetrasperma, Agaricus bisporus, Microbotryum violaceum, and others). Parthenogenetic reproduction in some insects also involves this type of fusion of nuclei. Intratetrad mating leads to the accumulation of haplolethals (i.e., lethals manifesting in haploid cells but not hindering their mating) in pericentric chromosome regions. Since heterozygosity increases viability of an organism, recombination has been suppressed during evolution in fungi characterized by intratetrad mating, which ensures heterozygosity of the most part of the genome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Mogie, M., Automixis: Its Distribution and Status, Biol. J. Linn. Soc., 1986, vol. 28, pp. 321–329.Google Scholar
  2. 2.
    Zakharov, I.A., Genetic Consequences of Intratetrad Mating of Ascospores in Yeasts, Vestn. Leningr. Univ., 1965, no. 9, pp. 124–129.Google Scholar
  3. 3.
    Zakharov, I.A., Increase in Homozygosity as a Result of Intratetrad and Intraoctad Fertilization in Fungi, Genetika (Moscow), 1968, vol. 4, pp. 98–105.Google Scholar
  4. 4.
    Hogben, L., An Introduction to Mathematical Genetics, New York: Norton, 1946.Google Scholar
  5. 5.
    Li, C.C., Population Genetics, Chicago: Univ. of Chicago Press, 1955.Google Scholar
  6. 6.
    Kempthorne, O., An Introduction to Genetic Statistics, New York: Wiley, 1957.Google Scholar
  7. 7.
    Zakharov, I.A., Mating Analysis in Microorganisms upon Sexual or Asexual Reproduction, in Genetika i selektsiya mikroorganizmov (Genetics and Selection of Microorganisms), Moscow: Nauka, 1964, p. 61.Google Scholar
  8. 8.
    Zakharov, I.A. and Matselyukh, B.P., Geneticheskie karty mikroorganizmov (Genetic Maps of Microorganisms), Kiev: Naukova Dumka, 1986.Google Scholar
  9. 9.
    Emerson, E., Meiotic Recombination in Fungi with Special Reference to Tetrad Analysis, in Methodology in Basic Genetics, San Francisco: Holden-Day, 1963, p. 167.Google Scholar
  10. 10.
    Lindegren, C.C., The Yeast Cell, Its Genetics and Cytology, St. Louis: Educational Publ., 1949.Google Scholar
  11. 11.
    Perkins, D.D., Biochemical Mutants in the Smut Fungus Ustilago maydis, Genetics, 1949, vol. 34, p. 607.Google Scholar
  12. 12.
    Rizet, G. and Engelmann, C., Contribution á l’étude génétique d’un Ascomycéte Tétrasporé: Podospora anserine (Ces.) Rehm., Rev. Cytol. Biol. Veget., 1949, vol. 11, p. 201.Google Scholar
  13. 13.
    Papazian, H., The Analysis of Tetrad Data, Genetics, 1952, vol. 37, p. 175.Google Scholar
  14. 14.
    Kirby, G.C., Breeding Systems and Heterozygosity in Populations of Tetrad-Forming Fungi, Heredity, 1984, vol. 52, p. 35.Google Scholar
  15. 15.
    Santa Maria, J., Polyploidy in Yeasts, Nature, 1958, vol. 181, p. 1740.Google Scholar
  16. 16.
    Sansome, E.R., Maintenance of Heterozygosity in a Homothallic Species of the Neurospora tetrasperma Type, Nature, 1946, vol. 157, p. 484.Google Scholar
  17. 17.
    Catcheside, D.G., The Genetics of Microorganisms, London: Pitman, 1951.Google Scholar
  18. 18.
    Howe, H.D., Markers and Centromere Distances in Neurospora tetrasperma, Genetics, 1963, vol. 48, p. 121.PubMedGoogle Scholar
  19. 19.
    Brefeld, O., Botanische Untersuchungen uber Hefenpilze: V. Die Brandpilze, Leipzig: Arthur Felix, 1883 (cited from [21]).Google Scholar
  20. 20.
    Harper, R.A., Nuclear Phenomena in Certain Stages in the Development of the Smuts, Trans. Wisconsin Acad. Sci. Arts Lett., 1899, vol. 12, pp. 475–498 (cited from [21]).Google Scholar
  21. 21.
    Oudemans, P.V., Alexander, H.M., Antonovics, J., et al., The Distribution of Mating-Type Bias in Natural Populations of the Anther-Smut Ustilago violacea on Silene alba in Virginia, Mycologia, 1998, vol. 90, pp. 372–381.Google Scholar
  22. 22.
    Guilliermond, M.A., Recherches sur la germination des spores et la conjugasion chez les levures, Rev. Gen. Bot., 1905, vol. 509, p. 337.Google Scholar
  23. 23.
    Whitehouse, H.L.K., Heterothallism and Sex in the Fungi, Biol. Rev., 1949, vol. 24, p. 411.Google Scholar
  24. 24.
    Merino, S.T., Nelson, M.A., Jacobson, D.J., and Natvig, D.O., Pseudohomothallism and Evolution of the Mating-Type Chromosome in Neurospora tetrasperma, Genetics, 1996, vol. 143, pp. 789–799.PubMedGoogle Scholar
  25. 25.
    Yamazaki, T., Ohara, Y., and Oshima, Y., Rare Occurrence of the Tetratype Tetrads in Saccharomycodes ludwigii, J. Bacteriol., 1976, vol. 125, p. 461.PubMedGoogle Scholar
  26. 26.
    Coluccio, A. and Neiman, A.M., Interspore Bridges: A New Feature of the Saccharomyces cerevisiae Spore Wall, Microbiology, 2004, vol. 150, pp. 3189–3196.CrossRefPubMedGoogle Scholar
  27. 27.
    James, A.P., The Spectrum of Severity of Mutant Effects: Haploid Effects in Yeast, Genetics, 1959, vol. 44, p. 1309.Google Scholar
  28. 28.
    Inge-Vechtomov, S.G., New Genetic Strains of Yeast Saccharomyces cerevisiae, Vestn. Leningr. Univ., 1963, no. 21, p. 117.Google Scholar
  29. 29.
    Nielsen, J., Isolation and Culture of Monokaryotic Haploids of Ustilago nuda, the Role of Proline in Their Metabolism and the Inoculation of Barley with Resynthesized Dikaryons, Can. J. Bot., 1968, vol. 46, pp. 1193–1200.Google Scholar
  30. 30.
    Garber, E.D. and Day, A.W., Genetic Mapping of a Phytopathogenic Basidiomycete, Ustilago violacea, Bot. Gaz., 1985, vol. 146, pp. 449–459.Google Scholar
  31. 31.
    Garber, E.D., Eng, C., and Stevens, D.M., Genetics of Ustilago violacea: XXI. Centromere-Linkage Values and Pericentric Gene Clustering, Curr. Genet., 1987, vol. 12, pp. 555–560.CrossRefGoogle Scholar
  32. 32.
    Hood, M.E. and Antonovics, J., Intratetrad Mating, Heterozygosity, and the Maintenance of Deleterious Alleles in Microbobotryum violaceum (= Ustilago violacea), Heredity, 2000, vol. 85, pp. 231–241.CrossRefPubMedGoogle Scholar
  33. 33.
    Thomas, A., Shykoff, J., Jonot, O., and Giraud, T., Sex-Ratio Bias in Populations of the Phytopathogenic Fungus Microbotryum violaceum from Several Host Species, Int. J. Plant Sci., 2003, vol. 164, pp. 641–647.CrossRefGoogle Scholar
  34. 34.
    Hood, M.E. and Antonovics, J., Mating within the Meiotic Tetrad and the Maintenance of Genomic Heterozygosity, Genetics, 2004, vol. 166, pp. 1751–1759.CrossRefPubMedGoogle Scholar
  35. 35.
    Antonovics, J., O’Keefe, K., and Hood, M.E., Theoretical Population Genetics of Mating-Type Linked Haplo-Lethal Alleles, Int. J. Plant Sci., 1998, vol. 159, pp. 192–198.CrossRefGoogle Scholar
  36. 36.
    Antonovics, J. and Abrams, J.Y., Intratetrad Mating and the Evolution of Linkage Relationships, Evolution, 2004, vol. 58, pp. 702–709.PubMedGoogle Scholar
  37. 37.
    Zakharov, I.A., Several Regularities of Gene Location in Eukaryotic Chromosomes, Genetika (Moscow), 1986, vol. 22, no.12, pp. 2620–2624.PubMedGoogle Scholar
  38. 38.
    Kerrigan, R.W., Imbernon, M., Callac, P., et al., The Heterothallic Life Cycle of Agaricus bisporus var. burnettii and Inheritance of Its Tetrasporic Trait, Exp. Mycol., 1994, vol. 18, pp. 193–210.CrossRefGoogle Scholar
  39. 39.
    Volkova, V.N., Kamzolkina, O.V., Kozlova, M.V., and D’yakov, Yu.T., Comparative Karyology of Agaricus bisporus Strains with Different Types of the Life Cycle, Mikol. Fitopatol., 2003, vol. 37, pp. 30–41.Google Scholar
  40. 40.
    Callac, P., de Haut, I.J., Imbernon, M., and Guinberteau, J., A Novel Homothallic Variety of Agaricus bisporus Comprises Rare Tetrasporic Isolates from Europe, Mycologia, 2003, vol. 95, pp. 222–231.Google Scholar
  41. 41.
    Callac, P., Billette, C., Imbernon, M., and Kerrigan, R.W., Morphological, Genetic, and Interfertility Analyses Reveal a Novel, Tetrasporic Variety of Agaricus bisporus from the Sonoran Desert of California, Mycologia, 1993, vol. 85, pp. 835–851.Google Scholar
  42. 42.
    Callac, P., Imbernon, M., Kerrigan, R.W., and Olivier, J.-M., The Two Life Cycles of Agaricus bisporus, Mushroom Biology and Mushroom Products, Royse, D.J., Ed., Pennsylvania: Pennsylvania Univ. Press, 1996, pp. 57–66.Google Scholar
  43. 43.
    Sommerbell, R.C., Castle, A.J., Horgen, P.A., et al., Inheritance of Restriction Fragment Length Polymorphisms in Agaricus brunnescens, Genetics, 1989, vol. 123, pp. 293–300.PubMedGoogle Scholar
  44. 44.
    Kerrigan, R.W., Royer, J.C., Baller, L.M., et al., Meiotic Behavior and Linkage Relationships in the Secondarily Homothallic Fungus Agaricus bisporus, Genetics, 1993, vol. 133, pp. 225–236.PubMedGoogle Scholar
  45. 45.
    Asher, J.H., Parthenogenesis and Genetic Variability: II. One-Locus Models for Various Diploid Populations, Genetics, 1970, vol. 66, pp. 369–391.PubMedGoogle Scholar
  46. 46.
    Murdy, W.H. and Carson, H.L., Parthenogenesis in Drosophila mangabeirai Malog, Am. Nat., 1959, vol. 43, pp. 355–363.CrossRefGoogle Scholar
  47. 47.
    Stalker, H.D., On the Evolution of Parthenogenesis in Lonchoptera (Diptera), Evolution, 1956, vol. 10, pp. 345–359.Google Scholar
  48. 48.
    Baudry, E., Kryger, P., Allsopp, M., et al., Whole-Genome Scan in Thelytokous-Laying Workers of the Cape Honeybee (Apis mellifera capensis): Central Fusion, Reduced Recombination Rates and Centromere Mapping Using Half-Tetrad Analyses, Genetics, 2004, vol. 167, pp. 243–252.CrossRefPubMedGoogle Scholar
  49. 49.
    Nace, G.W., Richards, C.M., and Asher, J.H., Parthenogenesis and Genetic Variability: I. Linkage and Inbreeding Estimations in the Frog, Rana pipiens, Genetics, 1970, vol. 66, pp. 349–368.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • I. A. Zakharov
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations