Russian Journal of Genetics

, Volume 41, Issue 2, pp 130–137 | Cite as

Divergence of the polytene chromosome banding sequences as a reflection of evolutionary rearrangements of the genome linear structure

  • L. I. Gunderina
  • I. I. Kiknadze
  • A. G. Istomina
  • V. D. Gusev
  • L. A. Miroshnichenko
General Genetics


Banding sequences of five chromosomal arms (A, C, D, E, and F), accounting for about 70% of the total genome size in 63 Chironomus species, were used as markers to analyze divergence patterns of the linear genome structure during the evolution. The number of chromosomal breakpoints between the pairs of banding sequences compared served as a measure of divergence. It was demonstrated that the greater the divergence between the species compared, the higher the number of chromosomal breakpoints and the smaller the size of the conserved chromosomal segments. A banding sequences comparison in sibling species demonstrated a lower number of chromosomal breakpoints; the breakpoint number was maximum in a comparison of the banding sequences in the subgenera Chironomus and Camptochironomus. The use of the number of chromosomal breakpoints as a genome divergence measure provided establishment of phylogenetic relationships between 63 Chironomus species and discrimination of sibling species groups and cytocomplexes on a phylogenetic tree.


Genome Size Genome Divergence Chromosomal Segment Sibling Species Polytene Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nadeau, J.H. and Taylor, B.A., Length of Chromosomal Segments Conserved Since Divergence of Man and Mouse, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 814–818.Google Scholar
  2. 2.
    Zakharov, I.A., Nikiforov, V.S., and Stepanyuk, E.V., Measuring Similarity in the Order of Homologous Genes, Genetika (Moscow), 1991, vol. 27, no.2, pp. 367–369.Google Scholar
  3. 3.
    Zakharov, I.A., Nikiforov, V.S., and Stepanyuk, E.V., Homology and Evolution of Gene Orders: Simulation and Reconstruction of the Evolutionary Process, Rus. J.Genet., 1997, vol. 33, no.1, pp. 24–30.Google Scholar
  4. 4.
    Sankoff, D. and Nadeau, J.H., Conserved Synteny As a Measure of Genomic Distance, Discrete Appl. Math., 1996, vol. 71, pp. 247–257.Google Scholar
  5. 5.
    Segarra, C. and Aguade, M., Molecular Organization of the X Chromosome in Different Species of the obscura Group of Drosophila, Genetics, 1992, vol. 130, pp. 513–521.Google Scholar
  6. 6.
    Segarra, C., Lozovskaya, E.R., Ribo, G., et al., P1 Clones from Drosophila melanogaster As Markers to Study the Chromosomal Evolution of Muller’s A Element in Two Species of obscura Group of Drosophila, Chromosoma, 1995, vol. 104, pp. 129–136.Google Scholar
  7. 7.
    Gonzales, J., Ranz, J.M., and Ruiz, A., Chromosome Elements Evolve at Different Rates in the Drosophila Genome, Genetics, 2002, vol. 161, pp. 1137–1154.Google Scholar
  8. 8.
    Keyl, H.-G., Chromosomenevolution bei Chironomus: II. Chromosomenumbauten und phylogenetische Beziehungen der Arten, Chromosoma, 1962, vol. 13, pp. 464–514.Google Scholar
  9. 9.
    Martin, J., Wuelker, W., and Sublette, J.E., Evolutionary Cytology in the Genus Chironomus Meig, Stud. Nat. Sci., 1974, vol. 1, pp. 1–12.Google Scholar
  10. 10.
    Martin, J., Chromosomes As Tools in Taxonomy and Phylogeny of Chironomidae (Diptera), Entomol. Scand., 1979, vol. 10,suppl., pp. 67–74.Google Scholar
  11. 11.
    Wuelker, W., Basic Patterns in the Chromosome Evolution of the Genus Chironomus (Diptera), Z. Zool. Syst. Evol., 1980, vol. 18, pp. 112–123.Google Scholar
  12. 12.
    Kiknadze, I.I., Shilova, A.I., Kerkis, I.E., et al., Kariotip i morfologiya lichinok triby Chironomini. Atlas (Karyotype and Morphology of Larvae of the Tribe Chironomini: An Atlas), Novosibirsk, 1991.Google Scholar
  13. 13.
    Kiknadze, I.I., Istomina, A.G., Gunderina, L.I., et al., Kariofondy khironomid kriolitozony Yakutii. Triba Chironomini (Karyopools of Chironomidae of the Yakutian Cryolithozone: Tribe Chironomini), Novosibirsk, 1996.Google Scholar
  14. 14.
    Wuelker, W., Dévai, G., and Dévai, I., Computer-Assisted Studies of Chromosome Evolution in the Genus Chironomus (Dipt.): Comparative and Integrated Analysis of Chromosome Arms A, E, and F, Acta Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 373–387.Google Scholar
  15. 15.
    Shobanov, N.A. and Zotov, S.A., Cytogenetic Aspects of Phylogeny of the Genus Chironomus Meigen (Diptera, Chironomidae), Entomol. Obozr., 2001, vol. 80, no.1, pp. 180–192.Google Scholar
  16. 16.
    Shobanov, N.A., Evolution of the Genus Chironomus (Dirtera, Chironomidae): 2. A Phylogenetic Model, Zool. Zh., 2002, vol. 81, no.6, pp. 711–718.Google Scholar
  17. 17.
    Scholl, A., Geiger, H.J., and Ryser, H.M., Die Evolution der Gattung Chironomus aus Biochemisch-Genetischer Sicht, in Chironomidae: Ecology, Systematics, Cytology and Physiology, Oxford: Pergamon, 1980, pp. 25–33.Google Scholar
  18. 18.
    Filippova, M.A., Gunderina, L.I., and Kiknadze, I.I., A Population-Genetic Study of the Species of the Chironomus Genus (Diptera: Chironomidae), Acta. Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 195–206.Google Scholar
  19. 19.
    Guriev, V., Makarevitch, I., Blinov, A., and Martin, J., Phylogeny of the Genus Chironomus (Diptera) Inferred from Sequences Mitochondrial Cytochrome b and Cytochrome Oxidase 1, Mol. Phylogenet. Evol., 2001, vol. 19, no.1, pp. 9–21.Google Scholar
  20. 20.
    Devai, G., Miskolczi, M., and Wuelker, W., Standardization of Chromosome Arms B, C, and D in Chironomus (Diptera, Chironomidae), Acta Biol. Debr. Oecol. Hung., 1989, vol. 2, pp. 79–92.Google Scholar
  21. 21.
    Kiknadze, I.I., Golygina, V.V., Istomina, A.G., and Gunderina, L.I., Pattern of Chromosome Polymorphism during Population and Species Divergence in Chironomis (Diptera, Chironomidae), Sib. Ekol. Zh., 2004, vol. 11, no.5, pp. 635–651.Google Scholar
  22. 22.
    Gunderina, L.I., Kiknadze, I.I., and Golygina, V.V., Intraspecific Differentiation of the Cytogenetic Structure in Natural Populations of Chironomus plumosus L., the Central Species in the Group of Sibling Species, Rus. J.Genet., 1999, vol. 35, no.2, pp. 142–150.Google Scholar
  23. 23.
    Golygina, V.V. and Kiknadze, I.I., The Karyofund of Chironomus plumosus (Diptera, Chironomidae) in Pale-arctic, Tsitologiya, 2001, vol. 43, pp. 507–519.Google Scholar
  24. 24.
    Gusev, V.D., Nemytikova, L.A., and Chuzhanova, N.A., Rapid Method for Identification of Interconnections between Functionally and/or Evolutionarily Related Biological Texts, Mol. Biol. (Moscow), 2001, vol. 35, no.6, pp. 1015–1022.Google Scholar
  25. 25.
    Kiknadze, I.I., Gunderina, L.I., Istomina, A.G., et al., Similarity Analysis of Inversion Banding Sequences of Chironomus Species (Breakpoint Phylogeny), in Bioinformatics of Genome Regulation and Structure, Boston, 2003, pp. 245–253.Google Scholar
  26. 26.
    Saitou, N. and Nei, M., The Neighbour-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.Google Scholar
  27. 27.
    Kumar, S., Tamura, K., Jakobsen, I.B., and Nei, M., MEGA2: Molecular Evolutionary Genetic Analysis Software, Tempe, Arizona: Arizona State Univ., 2001.Google Scholar
  28. 28.
    Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1980.Google Scholar
  29. 29.
    Kiknadze, I.I., Blinov, A.G., and Kolesnikov, N.N., Molecular Cytological Organization of the Genome in Chironomidae, in Strukturno-funktsional’naya organizatsiya genoma (Structural and Functional Organization of the Genome), Novosibirsk: Nauka, 1989, pp. 4–58.Google Scholar
  30. 30.
    Eggleston, W.B., Rim, N.R., and Lim, J.K., Molecular Characterization of the hobo-Mediated Inversions in Drosophila melanogaster, Genetica, 1996, vol. 144, pp. 647–656.Google Scholar
  31. 31.
    Andolfatto, P., Wall, J.D., and Kreitman, M., Unusual Haplotype Structure at the Proximal Breakpoint of the In(2L)t in a Natural Population of Drosophila melanogaster, Genetics, 1999, vol. 153, pp. 1297–1311.Google Scholar
  32. 32.
    Cáceres, M., Ranz, J.M., Barbadilla, A., et al., Generation of a Widespread Drosophila Inversion by a Transposable Element, Science, 1999, vol. 285, pp. 415–418.CrossRefPubMedGoogle Scholar
  33. 33.
    Evgen’ev, M.B., Zelentsova, H., Poluectova, H., et al., Mobile Elements and Chromosomal Evolution in virilis Group of Drosophila, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11 337–11 342.Google Scholar
  34. 34.
    Casals, F., Caceres, M., and Ruiz, A., The Foldback-Like Transposon Galileo Is Involved in the Generation of Two Different Natural Chromosomal Inversions of Drosophila buzzatii, Mol. Biol. Evol., 2003, vol. 20, pp. 675–685.Google Scholar
  35. 35.
    Lyttle, T.W. and Haymer, D.S., The Role of Transposable Element hobo in the Origin of Endemic Inversions in Wild Populations of Drosophila melanogaster, Genetics, 1992, vol. 86, pp. 113–126.Google Scholar
  36. 36.
    Wesley, C.S. and Eanes, W.F., Isolation and the Analysis of the Breakpoint Sequences of Chromosome Inversion In(3L)Payne in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 3132–3136.Google Scholar
  37. 37.
    Cirera, S., Martin-Campos, J., Segarra, C., and Aguade, M., Molecular Characterization of the Breakpoints of an Inversion Fixed between Drosophila melanogaster and D. subobscura, Genetics, 1995, vol. 139, pp. 321–326.Google Scholar
  38. 38.
    Rozas, J., Segarra, C., Riby, C., and Aguade, M., Molecular Population Genetics of the rp49 Gene Region in Different Chromosomal Inversions of Drosophila sub-obscura, Genetics, 1999, vol. 151, pp. 189–202.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • L. I. Gunderina
    • 1
  • I. I. Kiknadze
    • 1
  • A. G. Istomina
    • 1
  • V. D. Gusev
    • 2
  • L. A. Miroshnichenko
    • 2
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations