Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lactic acid copolyesters with carboxyl derivatives of p-tert-butylthiacalix[4]arene: synthesis and effect of macrocycle conformation on the physicochemical properties

Abstract

An approach to p-tert-butylthiacalix[4]arene derivatives functionalized with lactic acid fragments in three conformations (cone, partial cone, 1,3-alternate) was developed. The use of tetraglyme as a solvent and magnesium sulfate with p-toluenesulfonic acid as co-condensation catalysts made it possible to obtain the desired products without admixtures of oligolactic acid. The structure of the synthesized macrocycles was characterized by a complex of physico-chemical methods. The thermal properties of the synthesized lactic acid copolyesters were studied by simultaneous thermogravimetry and differential scanning calorimetry analysis. Significant effect of the p-tert-butylthiacalix[4]arene platform on the thermal stability of the obtained products was demonstrated. Nanoscale particles of the synthesized macrocycles with a low polydispersity index were obtained using nanoprecipitation from methanol or acetone into a buffer solution.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. Eling, S. Gogolewski, A.J. Pennings, Polymer, 1982, 23, 1587.

  2. 2.

    G. Schmack, B. Tändler, R. Vogel, R. Beyreuther, S. Jacobsen, H. G. Fritz, J. Appl. Polym. Sci., 1999, 73, 2785.

  3. 3.

    R. M. Rasal, D.E. Hirt, Macromol. Biosci., 2009, 9, 989.

  4. 4.

    S. S. Ray, M. Okamoto, Macromol. Rapid Commun., 2003, 24, 815.

  5. 5.

    Z. Zhang, S.S. Feng, Biomaterials, 2006, 27, 4025.

  6. 6.

    C. Gottschalk, H. Frey, Macromolecules, 2006, 39, 1719.

  7. 7.

    K. J. Zhu, L. Xiangzhou, Y. Shilin, J. Appl. Polym. Sci., 1990, 39, 1.

  8. 8.

    C. Schugens, C. Grandfils, R. Jerome, P. Teyssie, P. Delree, D. Martin, B. Malgrange, G. Moonen, J. Biomed. Mater. Res., 1995, 29, 1349.

  9. 9.

    M. Okada, Prog. Polym. Sci., 2002, 27, 87.

  10. 10.

    K. Hamad, M. Kaseem, M. Ayyoob, J. Joo, F. Deri, Progr. Polym. Sci., 2018, 85, 83

  11. 11.

    M. Gai, W. Li, J. Frueh, G. B. Sukhorukov, Colloid. Surf., B, 2019, 173, 521.

  12. 12.

    A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, R. M. Filho, Biotechnol. Adv., 2012, 30, 321.

  13. 13.

    I. I. Stoikov, A. A. Yantemirova, R. V. Nosov, I. Kh. Rizvanov, A. R. Julmetov, V. V. Klochkov, I. S. Antipin, A. I. Konovalov, I. Zharov, Org. Biomol. Chem., 2011, 9, 3225.

  14. 14.

    A. A. Vavilova, I. I. Stoikov, Beilstein J. Org. Chem., 2017, 13, 1940.

  15. 15.

    O. A. Mostovaya, P. L. Padnya, A. A. Vavilova, D. N. Shurpik, B. I. Khairutdinov, T. A. Mukhametzyanov, A. A. Khannanov, M. P. Kutyreva, I. I. Stoikov, New J. Chem., 2018, 42, 177.

  16. 16.

    A. A. Vavilova, R. V. Nosov, I. I. Stoikov, Mendeleev Commun., 2016, 26, 508.

  17. 17.

    V. Burilov, A. Valiyakhmetova, D. Mironova, R. Safiullin, M. Kadirov, K. Ivshin, O. Kataeva, S. Solovieva, I. Antipin, RSC Adv., 2016, 6, 44873.

  18. 18.

    L. S. Yakimova, J. B. Puplampu, A. A. Vavilova, I. I. Stoikov, in Advances in Chemistry Research, Nova Sci. Publ., 2015, pp. 145–169.

  19. 19.

    V. A. Burilov, D. A. Mironova, R. R. Ibragimova, S. E. Solovieva, B. König, I. S. Antipin, RSC Adv., 2015, 5, 101177.

  20. 20.

    G. A. Evtugyn, R. V. Shamagsumova, P. L. Padnya, I. I. Stoikov, I. S. Antipin, Talanta, 2014, 127, 9.

  21. 21.

    V. V. Gorbachuk, O. A. Mostovaya, V. G. Evtugyn, Yu. N. Osin, I. Kh. Rizvanov, A. V. Gerasimov, I. I. Stoikov, Macroheterocycles, 2017, 10, 174.

  22. 22.

    R. D. Dria, B. A. Goudy, K. A. Moga, P. S. Corbin, Polym. Chem., 2012, 3, 2070.

  23. 23.

    A. A. Vavilova, V. V. Gorbachuk, D. N. Shurpik, A. V. Gerasimov, L. S. Yakimova, P. L. Padnya, I. I. Stoikov, J. Mol. Liq., 2019, 281, 243.

  24. 24.

    X. Hu, H. Kang, Y. Li, M. Li, R. Wang, R. Xu, H. Qiao, L. Zhang, Polym. Chem., 2015, 6, 8112.

  25. 25.

    V. L. Furer, E. I. Borisoglebskaya, V. I. Kovalenko, J. Mol. Struct., 2006, 825, 38.

  26. 26.

    A. Jain, K. R. Kunduru, A. Basu, B. Mizrahi, A. J. Domb, W. Khan, Adv. Drug Delivery Rev., 2016, 107, 213.

  27. 27.

    O. A. Mostovaya, V. V. Gorbachuk, O. B. Bazanova, A. V. Gerasimov, V. G. Evtugyn, Yu. N. Osin, V. D. Myakushev, I. Kh. Rizvanov, I. I. Stoikov, Mater. Chem. Front., 2019, 3, 292.

  28. 28.

    N. Iki, F. Narumi, T. Fujimoto, N. Morohashi, S. Miyano, J. Chem. Soc., Perkin Trans. 2, 1998, 2745.

Download references

Author information

Correspondence to P. L. Padnya or I. I. Stoikov.

Additional information

Based on the materials of the V International Scientific Conference “Advances in Synthesis and Complexing” (April 22–26, 2019, Moscow, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2098–2104, November, 2019.

The work was financially supported by the Russian Science Foundation (Project No. 16-13-00005).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vavilova, A.A., Gorbachuk, V.V., Shurpik, D.N. et al. Lactic acid copolyesters with carboxyl derivatives of p-tert-butylthiacalix[4]arene: synthesis and effect of macrocycle conformation on the physicochemical properties. Russ Chem Bull 68, 2098–2104 (2019). https://doi.org/10.1007/s11172-019-2672-3

Download citation

Key words

  • thiacalix[4]arene
  • synthesis
  • lactic acid
  • copolyesters
  • co-condensation