Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1613–1620 | Cite as

Influence of heat treatment on the size of sodium lignosulfonate particles in water—ethanol media

  • N. N. TolkachevEmail author
  • A. E. Koklin
  • T. V. Laptinskaya
  • V. V. Lunin
  • V. I. Bogdan
Full Article
  • 3 Downloads

Abstract

Dynamic light scattering and size exclusion chromatography were used to investigate the size of sodium lignosulfonate particles in water—ethanol media and the changes occurring at temperatures of 115–440 °C (13 MPa). It was found that the characteristic size (diameter) of particles of the starting sodium lignosulfonate in solutions with a concentration of 1.5 and 13.3 g L−1 was 2.2−5.2 nm. Treatment in a flow reactor at temperature of 235–325 °C led to a disintegration of larger particles with an increase in the fraction of particles with size of 2.2 nm and a simultaneous formation of particles with a size of ~100 nm. Increasing the treatment temperature (>415 °C) led to a complete disappearance of particles with size of 2.2–5.2 nm and the formation of particles 100–130 nm in diameter, as well as the precipitation of large soot-like particles. IR spectroscopy showed that increasing the treatment temperature above 275 °C led to a decrease in the specific content of oxygen-containing and sulfoxyl groups in the sodium lignosulfonate structure, with the exception of carboxyl groups, whose fraction remained almost unchanged, as well as CH3 groups (methoxy and aliphatic), whose content increased slightly. The temperature range of 235–275 °C was optimal for hydrolysis of sodium lignosulfonate and preparation of aromatic monomers.

Key words

sodium lignosulfonate particle size dynamic light scattering size exclusion chromatography water—ethanol media heat treatment IR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Holladay, J. F. White, J. J. Bozell, D. Johnson, Top Value-Added Chemicals from Biomass, Vol. II, Results of Screening for Potential, Candidates from Biorefi nery Lignin, National Renewable Energy Laboratory, 2007.Google Scholar
  2. 2.
    H. Wanga, Yu. Pud, A. Ragauskas, B. Yang, Bioresource Technology, 2019, 271, 449–461.CrossRefGoogle Scholar
  3. 3.
    S. Beisl, A. Miltner, A. Friedl, Int. J. Mol. Sci., 2017, 18.Google Scholar
  4. 4.
    S. O. Limarta, J.-M. Ha, Y.-K. Park, H. Lee, D. J. Suh, J. Jae, J. Ind. Eng. Chem., 2018, 57, 45–54.CrossRefGoogle Scholar
  5. 5.
    M.-F. Li, Sh.-N. Sun, F. Xu, R.-C. Sun, Separation and Purifi cation Technology, 2012, 101, 18–25.CrossRefGoogle Scholar
  6. 6.
    W. Shartl, Light Scattering by Polymer Solutions and Nanoparticle Dispersions, Shpringer, 2007, 191.Google Scholar
  7. 7.
    O. Glatter, Scattering Methods and their Application in Colloid and Interface Science, 2018, 223–263.CrossRefGoogle Scholar
  8. 8.
    B. Gonzalez, N. Calvar, E. Gómez, Á. Domínguez, J. Chem. Thermodynamics, 2007, 39, 1578–1588.CrossRefGoogle Scholar
  9. 9.
    R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, 1981, 220.Google Scholar
  10. 10.
    O. P. Grushnikov, V. V. Elkin, Dostizheniya i problemy khimii lignina [Achievements and Problems of Lignin Chemistry], Nauka, Moscow, 1973 (in Russian).Google Scholar
  11. 11.
    V. I. Bogdan, Ya. E. Sergeeva, V. V. Lunin, I. V. Perminova, A. I. Konstantinov, G. E. Zinchenko, K. V. Bogdan, Prikladnaya Biokhimiya i Mikrobiologiya [Appl. Biochem. and Microbiol.], 2018, 54, 2, 88–96 (in Russian).CrossRefGoogle Scholar
  12. 12.
    K. G. Bogolitsyn, V. V. Lunin, Fizicheskaya khimiya lignina [Physical Chemistry of Lignin], Academkniga, Moscow, 2010, 489 pp. (in Russian).Google Scholar
  13. 13.
    A. P. Karmanov, M. Isakhodjaeva, O. Yu. Dergacheva, Russ. Chem. Bull., 2017, 66, 643.CrossRefGoogle Scholar
  14. 14.
    O. Faix, Holzforschung., 1991, 45, 21–27.CrossRefGoogle Scholar
  15. 15.
    I. A. Palamarchuk, O. S. Brovko, K. G. Bogolitsyn, Russ. J. Appl. Chem., 2015, 88, 109.CrossRefGoogle Scholar
  16. 16.
    E. N. Prasetyo, T. Kudanga, L. Ostergaard, J. Rencoret, A. Gutierrez, J. C. del Rio, J. I. Santos, L. Nieto, J. Jimenez-Barbero, A. T. Martinez, J. Li, G. Gellerstedt, S. Lepifre, C. Silva, Su Yeon Kim, A. Cavaco-Paulo, B. S. Klausen, B. F. Lutnaes, G. S. Nyanhongo, G. M. Guebitz, Bioresource Technology, 2010, 101, 5054–5062.CrossRefGoogle Scholar
  17. 17.
    A. P. Karmanov, O. Yu. Dergacheva, Khimiya rastitel’nogo syr’ya [Chemistry of Plant Materials], 2012, No. 1, 61 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • N. N. Tolkachev
    • 1
    • 2
    Email author
  • A. E. Koklin
    • 1
  • T. V. Laptinskaya
    • 3
  • V. V. Lunin
    • 1
    • 2
  • V. I. Bogdan
    • 1
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryLomonosov Moscow State UniversityMoscowRussian Federation
  3. 3.Department of PhysicsLomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations