Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1599–1602 | Cite as

The use of hypercrosslinked polymer sorbents and composites based on them in the sorption of toxic and bad-smelling substances

  • S. E. LyubimovEmail author
  • L. A. Pavlova
  • M. V. Sokolovskaya
  • A. A. Korlyukov
  • V. A. Davankov
Full Article
  • 4 Downloads

Abstract

The sorption of cadaverine from the air on hypercrosslinked polystyrene sorbents was investigated. An available technique for the introduction of iron oxide into the polystyrene matrix was proposed. The sorbents showed high capacity for cadaverine extraction from the air, and the iron-containing sorbent was quite universal and can be used to extract nicotine, scatol and hydrogen sulfide.

Key words

hypercrosslinked polystyrene sorption iron oxide hydrogen sulphide cadaverine nicotine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Akimoto, Science, 2003, 302, 1716.CrossRefGoogle Scholar
  2. 2.
    C. Pénard-Morand, I. Annesi-Maesano, Breathe, 2004, 1, 109.CrossRefGoogle Scholar
  3. 3.
    R. T. Yang, Adsorbents: Fundamentals and Applications, Wiley-Interscience, Hoboken, 2003, 424 pp.CrossRefGoogle Scholar
  4. 4.
    V. Davankov, M. Tsyurupa, Hypercrosslinked Polymeric Networks and Adsorbing Materials, Elsevier, Oxford, 2011, 648 pp.Google Scholar
  5. 5.
    L. Tan, B. Tan, Chem. Soc. Rev., 2017, 46, 3322.CrossRefGoogle Scholar
  6. 6.
    S. N. Sidorov, I. V. Volkov, V. A. Davankov, M. P. Tsyurupa, P. M. Valetsky, L. M. Bronstein, R. Karlinsey, J. W. Zwanziger, V. G. Matveeva, E. M. Sulman, N. V. Lakina, E. A. Wilder, R. J. Spontak, J. Am. Chem. Soc., 2001, 123, 10502.CrossRefGoogle Scholar
  7. 7.
    E. Sulman, V. Doluda, S. Dzwigaj, E. Marceau, L. Kustov, O. Tkachenko, A. Bykov, V. Matveeva, M. Sulman, N. Lakina, J. Mol. Catal. A: Chem., 2007, 278, 112.CrossRefGoogle Scholar
  8. 8.
    V. N. Sapunov, A. A. Stepacheva, E. M. Sulman, J. Warna, P. Maki-Arvela, M. G. Sulman, A. I. Sidorov, B. D. Stein, D. Yu. Murzin, V. G. Matveeva, J. Ind. Eng. Chem., 2017, 46, 426.CrossRefGoogle Scholar
  9. 9.
    S. E. Lyubimov, A. A. Vasil’ev, A. A. Korlyukov, M. M. Ilyin, S. A. Pisarev, V. V. Matveev, A. E. Chalykh, S. G. Zlotin, V. A. Davankov, React. Funct. Polym., 2009, 69, 755.CrossRefGoogle Scholar
  10. 10.
    S. E. Lyubimov, E. A. Rastorguev, K. I. Lubentsova, A. A. Korlyukov, V. A. Davankov, Tetrahedron Lett., 2013, 54, 1116.CrossRefGoogle Scholar
  11. 11.
    D. Leun, A. K. SenGupta, Environ. Sci. Technol., 2000, 34, 3276.CrossRefGoogle Scholar
  12. 12.
    L. Wang, R. T. Yang, Front. Chem. Sci. Eng., 2014, 8, 8.CrossRefGoogle Scholar
  13. 13.
    R. Javadli, A. de Klerk, Appl. Petrochem. Res., 2012, 1, 3.CrossRefGoogle Scholar
  14. 14.
    J. Jiang, A. Chan, S. Ali, A. Saha, K. J. Haushalter, W. Ling, M. Lam, M. Glasheen, J. Parker, M. Brenner, Sari B. Mahon, H. H. Patel, R. Ambasudhan, S. A. Lipton, R. B. Pilz, G. R. Boss, Sci. Rep., 2016, 6, 20831.CrossRefGoogle Scholar
  15. 15.
    R. Abdulrahman, I. Kamal, J. Ali, IJETT, 2015, 28, 214.CrossRefGoogle Scholar
  16. 16.
    M. S. Parandin, H. Rashidi, J. Nat. Gas Sci. Eng., 2018, 59, 116.CrossRefGoogle Scholar
  17. 17.
    C. Cara, E. Rombi, A. Musinu, V. Mameli, A. Ardu, M. S. Angotzi, L. Atzori, D. Niznansky, H. L. Xin, C. Cannas, J. Mater. Chem. A, 2017, 5, 21688.CrossRefGoogle Scholar
  18. 18.
    B. Y. Yu, S.-Y. Kwak, J. Mater. Chem., 2010, 20, 8320.CrossRefGoogle Scholar
  19. 19.
    W. Cheng, K. Tang, Y. Qi, J. Sheng, Z. Liu, J. Mater. Chem., 2010, 20, 1799.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • S. E. Lyubimov
    • 1
    Email author
  • L. A. Pavlova
    • 1
  • M. V. Sokolovskaya
    • 1
  • A. A. Korlyukov
    • 1
  • V. A. Davankov
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations