Russian Chemical Bulletin

, Volume 68, Issue 8, pp 1555–1557 | Cite as

Synthesis of N-methyl-N-(silylmethyl)amines

  • B. A. Gostevskii
  • N. F. LazarevaEmail author
Full Article


(Chloromethyl)silanes ClCH2SiMen(OMe)3-n (n = 0—2) react with methylamine at room temperature to give a mixture of secondary N-methyl-N-(silylmethyl)amines MeNHCH2SiMen(OMe)3-n and tertiary N-methy1-N, N-bis(silylmethyl)amines MeN[CH2SiMen(OMe)3-n]2 (n = 0—2). The product ratio depends on the ratio of the starting reactants. At the methylamine : silane ratio of 5 : 1, the main products are tertiary amines, while the increase in the proportion of methylamine (methylamine : silane = 25 : 1) leads to predomination of the secondary amines.

Key words

(chloromethyl)silanes amines organosilicon compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-P. Picard, Can. J. Chem., 2000, 78, 1363.CrossRefGoogle Scholar
  2. 2.
    J.-P. Picard, Adv. Organomet. Chem., 2005, 52, 175.CrossRefGoogle Scholar
  3. 3.
    J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev., 2008, 108, 2265.CrossRefGoogle Scholar
  4. 4.
    N. W. Mitzel, K. Vojinovic, U. Losehand, in Organosilicon Chemistry V: From Molecules to Materials, Eds N. Auner, J. Weis, Wiley-VCH, Weinhiem, 2003, p. 226.Google Scholar
  5. 5.
    J. O. Bauer, C. Strohmann, Inorg. Chim.Acta, 2018, 469, 133.CrossRefGoogle Scholar
  6. 6.
    S. G. Roller, J. O. Bauer, C. Strohmann, Angew. Chem., Int. Ed., 2017, 56, 7991.CrossRefGoogle Scholar
  7. 7.
    N. Resava-Reddy, C. Golz, C. Strohmann, R. Rumar, Chem. Eur. J., 2016, 22, 18373.CrossRefGoogle Scholar
  8. 8.
    V. H. Gessner, C. Strohmann, Dalton Trans., 2012, 41, 3452.CrossRefGoogle Scholar
  9. 9.
    D. Fan, Y. Liu, J. Jia, Z. Zhang, Y. Liu, W. Zhang, Org. Lett., 2019, 21, 1042.CrossRefGoogle Scholar
  10. 10.
    H. C. Jeong, S. H. Lim, D. W. Cho, S. H. Rim, P. S. Mariano, Org. Biomol. Chem., 2016, 14, 10502.CrossRefGoogle Scholar
  11. 11.
    S. H. Lim, D. W. Cho, J. Choi, H. An, J. H. Shim, P. S. Mariano, Tetrahedron, 2017, 73, 6249.CrossRefGoogle Scholar
  12. 12.
    J.-J. Feng, M. Oestreich, Org. Lett., 2018, 20, 4273.CrossRefGoogle Scholar
  13. 13.
    Nitrogen, Oxygen and Sulfur Ylide Chemistry: A Practical Approach in Chemistry, Ed. J. S. Clark, Oxford Univ. Press, 2002, p. 292.Google Scholar
  14. 14.
    J. Hernandez-Toribio, S. Padilla, J. Adrio, J. C. Carretero, Angew. Chem., Int. Ed., 2012, 51, 8854.CrossRefGoogle Scholar
  15. 15.
    P.-Q. Huang, Q.-W. Lang, X.-N. Hu, J. Org. Chem., 2016, 81, 10227.CrossRefGoogle Scholar
  16. 16.
    G. Tran, R. Meier, L. Harris, D. L. Browne, S. V. Ley, J. Org. Chem., 2012, 77, 11071.CrossRefGoogle Scholar
  17. 17.
    P. Srihari, S. R. Yaragorla, D. Basu, S. Chandrasekhar, Synthesis, 2006, 2646.Google Scholar
  18. 18.
    R.-I. Washizuka, S. Minakata, I. Ryu, M. Romatsu, Tetrahedron, 1999, 55, 12969.CrossRefGoogle Scholar
  19. 19.
    E. Ya. Lukevits, R. Ya. Sturkovich, Lzv. AN Latv. SSR [Bull. Acad. Sci. Latvian SSR], 1977, No. 7, 29 (in Russian).Google Scholar
  20. 20.
    V. P. Feshin, L. S. Romanenko, M. G. Voronkov, Russ. Chem. Rev., 1981, 50, 248.CrossRefGoogle Scholar
  21. 21.
    G. Zingler, H. Relling, E. Popowski, Z. Anorg. Allg. Chem., 1981, 476, 41.CrossRefGoogle Scholar
  22. 22.
    V. Fialova, V. Bažant, V. Chvalovsky, Coll. Czech. Chem. Commun., 1973, 38, 3837.CrossRefGoogle Scholar
  23. 23.
    N. W. Mitzel, C. Riener, D. W. H. Rankin, Organometallics, 1999, 18, 3437.CrossRefGoogle Scholar
  24. 24.
    N. W. Mitzel, R. Vojinovic, T. Foerster, H. E. Robertson, R. B. Borisenko, D. W. H. Rankin, Chem. Eur. J., 2005, 11, 5114.CrossRefGoogle Scholar
  25. 25.
    B. Waerder, S. Steinhauer, C. G. Reuter, J. Bader, B. Neumann, H. G. Stammler, Yu. V. Vishnevskiy, B. Hoge, N. W. Mitzel, Dalton Trans., 2015, 44, 13347.CrossRefGoogle Scholar
  26. 26.
    A. Berkefeld, C. F. Guerra, R. Bertermann, D. Troegel, J. O. Daiss, J. Stohrer, F. M. Bickelhaupt, R. Tacke, Organometallics, 2014, 33, 2721.CrossRefGoogle Scholar
  27. 27.
    J. Ehbets, S. Lorenzen, C. Mahler, R. Bertermann, A. Berkefeld, J. Poater, E. Fritz-Langhals, R. Weidner, F. M. Bickelhaupt, R. Tacke, Eur. J. Inorg. Chem., 2016, 1641.Google Scholar
  28. 28.
    N. W. Mitzel, C. Riener, D. W. H. Rankin, Organometallics, 1999, 18, 3437.CrossRefGoogle Scholar
  29. 29.
    N. F. Lazareva, Russ. Chem. Bull, 2011, 60, 615.CrossRefGoogle Scholar
  30. 30.
    R. Tacke, R. Bertermann, A. Biller, O. Dannappel, M. Pülm, R. Willeke, Eur. J. Inorg. Chem., 1999, 795.Google Scholar
  31. 31.
    L.-L. Bao, Z.-Q. Liu, Chem. Med. Chem., 2016, 11, 1617.CrossRefGoogle Scholar
  32. 32.
    J. Chen, T. Chen, Q. Hu, R. Püntener, Y. Ren, J. She, Z. Du, M. Scalone, Org. Process Res. Dev., 2014, 18, 1702.CrossRefGoogle Scholar
  33. 33.
    I. V. Sterkhova, I. M. Lazarev, V. I. Smirnov, N. F. Lazareva, J. Organomet. Chem., 2015, 775, 27.CrossRefGoogle Scholar
  34. 34.
    W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed., Butterworth-Heinemann, Amsterdam–Boston, 2009, 760 pp.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  1. 1.A. E. Favorsky Irkutsk Institute of ChemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussian Federation

Personalised recommendations