Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 1, pp 174–180 | Cite as

l-Arginine and nitric oxide synthesis in the cells with inducible NO synthase

  • Z. V. KuroptevaEmail author
  • L. M. Baider
  • L. G. Nagler
  • T. N. BogatyrenkoEmail author
  • O. L. BelaiaEmail author
Full Articles
  • 5 Downloads

Abstract

The effect of citrulline and ammonium chloride on the nitric oxide formation by peritoneal macrophages and liver tissue cells was studied using ESR spectroscopy. In ex vivo models, the incubation of cells capable of expressing inducible NO synthase (iNOS) with interferon-γ resulted in a moderate increase in the amount of hemoglobin–nitric oxide nitrosyl complexes (Heme–NO NCs), whereas incubation with l-citrulline and ammonium chloride increased the amount of Heme–NO NCs by an order of magnitude. It was assumed that a separate cycle of L-arginine and nitric oxide synthesis exists in the peritoneal macrophages and liver cells, with the major participants of the cycle being the inducible NO synthase enzyme (iNOS) and enzymes that synthesize L-arginine from L-citrulline and a nitrogen source. Functioning of this cycle makes immunocompetent cells with iNOS able to produce NO for a long time and in large amounts.

Key words

nitric oxide arginine and nitric oxide cycle liver cells peritoneal macrophages inducible NO synthase citrulline ammonium chloride ESR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Ustyugov, G. M. Aliev, Russ. Chem. Bull., 2016, 65, 1151.CrossRefGoogle Scholar
  2. 2.
    D. J. Stuehr, M. A. Marletta, PNAS USA, 1985, 82, 77383.CrossRefGoogle Scholar
  3. 3.
    D. A. Geller, P. D. Freeswick, D. Nguyen, A. K. Nussler, M. Disilvio, R. A. Shapiro, S. C. Wang, R. L. Simmons, T. R. Billiar, Arch. Surg., 1994, 129, 165.CrossRefGoogle Scholar
  4. 4.
    A. K. Nussler, M. Disilvio, T. R. Billiar, R. A. Hoffman, D. A. Geller, R. Selby, J. Madariage, R. L. Simmons, J. Exp. Med., 1992., 176, 261.Google Scholar
  5. 5.
    Y. Vodovotz, N. S. Kwon, M. Pospischil, J. Manning, J. Paik, C. Nathan, J. Immunol., 1994, 152, 4110.Google Scholar
  6. 6.
    I. Vouldoukis, V. Riveros-Moreno, B. Dugas, F. Ouaaz, P. Becherel, P. Debre, S. Moncada, M. D. Mossalayai, PNAS USA, 1995, 92, 7804.CrossRefGoogle Scholar
  7. 7.
    D. L. Granger, J. B. Hibbs, J. R. Perfect, D. T. Durack, J. Clin. Invest., 1988, 81, 1129.CrossRefGoogle Scholar
  8. 8.
    I. Vouldoukis, D. Mazier, P. Debre, M. D. Mossalayai, Res. Immunol., 1995, 146, 689.CrossRefGoogle Scholar
  9. 9.
    T. R. Billiar, R. D. Curran, D. J. Stuehr, M. A. West, B. G. Bentz, R. L. Simmons, J. Exp. Med., 1989, 169, 1467.CrossRefGoogle Scholar
  10. 10.
    R. D. Curran, T. R. Billiar, D. J. Stuehr, K. Hoffman, R. L. Simmons, J. Exp. Med., 1989, 170, 1769.CrossRefGoogle Scholar
  11. 11.
    J. B. Hibbs, Z. Vavrin, R. R. Taintor, J. Immunol., 1987, 138, 550.Google Scholar
  12. 12.
    D. J. Stuehr, C. T. Nathan, J. Exp. Med., 1989, 169, 1543.CrossRefGoogle Scholar
  13. 13.
    Z. V. Kuropteva, L. M. Baider, T. T. Zhumabaeva, Biofizika, 2000, 45, 671 [Biophysics (Engl. Transl.), 2001, 45].Google Scholar
  14. 14.
    Z. V. Kuropteva, T. T. Zhumabaeva, L. M. Baider, A. V. Aleshchenko, Dokl. Akad. Nauk, 2001, 376, 258 [Dokl. Chem. (Engl. Transl.), 2001, 376].Google Scholar
  15. 15.
    Z. V. Kuropteva, T. T. Zhumabaeva, L. M. Baider, L. A. Volodina, Dokl. Akad. Nauk, 2000, 374, 552 [Dokl. Chem. (Engl. Transl.), 2000, 374].Google Scholar
  16. 16.
    A. L. Leninger, Principles of Biochemistry, Eds D. L. Nelson, M. M. Cox, W. H. Freeman and Company, New York, 2008.Google Scholar
  17. 17.
    M. Wettstein, W. Gerok, D. Haussinger, Hepatology, 1994, 19, 217.CrossRefGoogle Scholar
  18. 18.
    C. M. Pastor, S. M. Morris, T. R. Billiar, Am. J. Physiol., 1995, 269, 861.Google Scholar
  19. 19.
    Z. V. Kuropteva, L. M. Baider, Dokl. Akad. Nauk, 2005, 403, 258 [Dokl. Chem. (Engl. Transl.), 2005, 403].Google Scholar
  20. 20.
    L. M. Baider, A. V. Aleshchenko, Z. V. Kuropteva, Dokl. Akad. Nauk, 2005, 405, 547 [Dokl. Chem. (Engl. Transl.), 2005, 405].Google Scholar
  21. 21.
    Animal Tissue Culture, Eds G. D. Wasley, R. John, Williams & Wilkins Co, Baltimore, 1972.Google Scholar
  22. 22.
    D. L. Granger, N. M. Anstey, W. C. Miller, J. B. Weinberg, Methods Enzymol., 1999, 301, 49.CrossRefGoogle Scholar
  23. 23.
    M. Несker, W. C. Sessa, J. H. Hayley, E. E. Anggard, J. R. Vane, PNAS USA, 1990, 87, 8612.CrossRefGoogle Scholar
  24. 24.
    G. Wu, J. T. Brosnan, Biochem. J., 1992, 281, 45.CrossRefGoogle Scholar
  25. 25.
    A. R. Baydoun, R. G. Bogle, J. D. Pearson, G. E. Mann, Br. J. Pharmacol., 1994, 112, 487.CrossRefGoogle Scholar
  26. 26.
    S. R. W. Louro, P. C. Ribeiro, G. Bemski, Biochim. Biophys. Acta, 1981, 670, 56.CrossRefGoogle Scholar
  27. 27.
    M. Perutz, J. V. Kilmartin, K. Nagai, A. Szabo, Biochem. J., 1976, 15, 378.CrossRefGoogle Scholar
  28. 28.
    Z. V. Kuropteva, O. L. Belaia, L. M. Bayder, T. N. Bogatyrenko, Oxid. Commun., 2015, 38, 85.Google Scholar
  29. 29.
    T. N. Bogatyrenko, Z. V. Kuropteva, L. M. Baider, T. E. Sashenkova, D. V. Mishchenko, V. R. Bogatyrenko, N. P. Konovalova, Russ. Chem. Bull., 2016, 65, 561.CrossRefGoogle Scholar
  30. 30.
    J. MacMicking, Q.-W. Xie, C. Nathan, Annu. Rev. Immunol., 1997, 15, 323.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  1. 1.N. M. Emanuel′ Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation
  3. 3.Moscow State University of Medicine and DentistryMoscowRussian Federation

Personalised recommendations