Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 1, pp 9–16 | Cite as

Chitosan based composite sorbents for arsenic removal

  • L. A. ZemskovaEmail author
  • D. Kh. Shlyk
  • A. V. Voit
  • N. N. Barinov
Full Articles
  • 7 Downloads

Abstract

The possibilities of using chitosan and its composites with transition metal oxides for arsenic removal from solutions with low concentrations are discussed. Methods for the formation of composite sorbents based on chitosan and molybdenum in a composition with a carbon fiber providing improved physical and chemical properties with respect to the recovered component are considered. The sorption properties of the obtained materials under dynamic conditions for the purification of solutions from arsenic are compared. It is shown that the preliminary modification of the carbon fiber with chitosan by ionic gelation using sulfate ion and then by adsorption with molybdate ion leads to the production of an efficient sorption material that provides the purification of 1600 column volumes of an arsenic solution at an initial concentration of 105 μg L–1 to a maximum permissible concentration of 50 μg L–1. The calculation methods show that the gel ability of sulfate and molybdate ions is approximately the same.

Key words

chitosan molybdate sulfate ionic gelation arsenic sorption simulation quantum chemistry density functional 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Guibal, Sep. Purif. Tech., 2004, 38, 43.CrossRefGoogle Scholar
  2. 2.
    P. Chassary, T. Vincent, E. Guibal, React. Funct. Polym., 2004, 60, 137.CrossRefGoogle Scholar
  3. 3.
    A. J. Varma, S. V. Deshpande, J. F. Kennedy, Carbohyd. Polym., 2004, 55, 77.CrossRefGoogle Scholar
  4. 4.
    G. Crini, Prog. Polym. Sci., 2005, 30, 38.CrossRefGoogle Scholar
  5. 5.
    C. Gerente, V. K. C. Lee, P. Le Cloirec, G. McKay, Crit. Rev. Env. Sci. Tec., 2007, 37, 41.CrossRefGoogle Scholar
  6. 6.
    A. Bhatnagar, M. Sillanpää, Adv. Colloid Interface Sci., 2009, 152, 26.CrossRefGoogle Scholar
  7. 7.
    K. Z. Elwakeel, J. Disper. Sci. Technol., 2010, 31, 273.CrossRefGoogle Scholar
  8. 8.
    W. S. Wan Ngah, L. C. Teong, M. A. K. M. Hanafiah, Carbohyd. Polym., 2011, 83, 1446.CrossRefGoogle Scholar
  9. 9.
    B. Liu, D. Wang, G. Yu, X. Meng, J. Ocean Univ. China (Ocean. Coast. Sea Res.), 2013, 12, 500.CrossRefGoogle Scholar
  10. 10.
    K. J. Adarsh, G. Madhu, Int. J. Innovat. Res. Sci., Eng. Technol., 2014, 3, 9609.Google Scholar
  11. 11.
    J. Wang, C. Chen, Bioresour. Technol., 2014, 160, 129.CrossRefGoogle Scholar
  12. 12.
    D. Mohan, C. U. Pittman, Jr., J. Hazard. Mater., 2007, 142, 1.CrossRefGoogle Scholar
  13. 13.
    M. Chiban, M. Zerbet, G. Carja, F. Sinan, J. Environ. Chem. Ecotoxicol., 2012, 4, 91.Google Scholar
  14. 14.
    N. R. Nicomel, K. Leus, K. Folens, P. Van Der Voort, G. D. Laing, Int. J. Environ. Res. Public Health, 2016, 13, 2.Google Scholar
  15. 15.
    L. S. Thakur, P. Semil, Int. J. ChemTech. Res., 2013, 5, 1299.Google Scholar
  16. 16.
    L. Dambies, Separ. Sci. Technol., 2004, 39, 603.CrossRefGoogle Scholar
  17. 17.
    A. H. Malik, Z. M. Khan, Q. Mahmood, S. Nasreen, Z. A. Bhatti, J. Hazard. Mater., 2009, 168, 1.CrossRefGoogle Scholar
  18. 18.
    J. Qu, J. Environ. Sci., 2008, 20, 1.CrossRefGoogle Scholar
  19. 19.
    C. Gerente, G. McKay, Y. Andres, P. Le Cloirec, Adsorption, 2005, 11, 859.CrossRefGoogle Scholar
  20. 20.
    C. Gerente, Y. Andres, G. McKay, P. Le Cloirec, Chem. Eng. J., 2010, 158, 593.CrossRefGoogle Scholar
  21. 21.
    V. M. Boddu, K. Abburi, J. L. Talbott, E. D. Smith, R. Haasch, Water Res., 2008, 42, 633.CrossRefGoogle Scholar
  22. 22.
    S. Saha, P. Sarcar, J. Hazard. Mater., 2012, 227–228, 68.Google Scholar
  23. 23.
    R. M. Dhoble, S. Lunge, A. G. Bhole, S. Rayalu, Water Res., 2011, 45, 4769.CrossRefGoogle Scholar
  24. 24.
    A. Gupta, V. S. Chauhan, N. Sankararamakrishnan, Water Res., 2009, 43, 3862.CrossRefGoogle Scholar
  25. 25.
    D. H. K. Reddy, S.-M. Lee, Adv. Colloid Interface Sci., 2013, 201–202, 68.Google Scholar
  26. 26.
    V. V. Tolmacheva, V. V. Apyari, E. V. Kochuk, S. G. Dmi trienko, J. Anal. Chem., 2016, 71, 321.CrossRefGoogle Scholar
  27. 27.
    M. S. Seyed Dorraji, A. Mirmohseni, F. Tasselli, A. Criscuoli, M. Carraro, S. Gross, A. Figoli, J. Polym. Res., 2014, 21, 399.CrossRefGoogle Scholar
  28. 28.
    S. M. Miller, J. B. Zimmerman, Water Res., 2010, 44, 5722.CrossRefGoogle Scholar
  29. 29.
    S. M. Miller, M. L. Spaulding, J. B. Zimmerman, Water Res., 2011, 45, 5745.CrossRefGoogle Scholar
  30. 30.
    L. Dambies, E. Guibal, A. Rose, Coll. Surf., A: Physicochem. Eng. Aspects, 2000, 170, 19.CrossRefGoogle Scholar
  31. 31.
    L. Dambies, T. Vincent, E. Guibal, Water Res., 2002, 36, 3699.CrossRefGoogle Scholar
  32. 32.
    RF Pat. 2281160; Byul. Izobret. [Invention Bulletin], 2006, 22 (in Russian).Google Scholar
  33. 33.
    L. A. Zemskova, A. V. Voit, N. A. Didenko, Fibre Chemistry, 2014, 46, 178.CrossRefGoogle Scholar
  34. 34.
    L. A. Zemskova, A. V. Voit, D. Kh. Shlyk, N. N. Barinov, Russ. J. Appl. Chem., 2016, 89, 727.CrossRefGoogle Scholar
  35. 35.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S.T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.CrossRefGoogle Scholar
  36. 36.
    W. J. Stevens, H. Basch, M. Krauss, J. Chem. Phys., 1984, 81, 6026.CrossRefGoogle Scholar
  37. 37.
    R. H. Hertwig, W. Koch, Chem. Phys. Lett., 1997, 268, 345.CrossRefGoogle Scholar
  38. 38.
    H. Li, C. S. Pomelli, J. H. Jensen, Theor. Chim. Acta, 2003, 109, 71.CrossRefGoogle Scholar
  39. 39.
    K. I. Draget, K. M. Varum, E. Moen, H. Gynnild, O. Smidsrod, Biomaterials, 1992, 13, 635.CrossRefGoogle Scholar
  40. 40.
    L. Dambies, T. Vincent, A. Domard, E. Guibal, Biomacromolecules, 2001, 2, 1198.CrossRefGoogle Scholar
  41. 41.
    Ş. Racoviţă, S. Vasiliu, M. Popa, C. Luca, Rev. Roumaine de Chimie, 2009, 54, 709.Google Scholar
  42. 42.
    E. Guibal, C. Milot, J. M. Tobin, Ind. Eng. Chem. Res., 1998, 37, 1454.CrossRefGoogle Scholar
  43. 43.
    C. Milot, J. McBrien, S. Allen, E. Guibal, J. Appl. Polym. Sci., 1998, 68, 571.CrossRefGoogle Scholar
  44. 44.
    E. Guibal, C. Milot, J. Roussy, Separ. Sci. Technol., 2000, 35, 1021.CrossRefGoogle Scholar
  45. 45.
    L. A. Zemskova, A. V. Voit, D. Kh. Shlyk, N. N. Barinov, Izv. Vuzov. Ser. Khimiya i Khim. Tekhnologiya [Bulletin of Higher Educational Institutes. Ser. Chem. Chem. Technol.], 2016, 59, 31 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • L. A. Zemskova
    • 1
    Email author
  • D. Kh. Shlyk
    • 1
  • A. V. Voit
    • 1
  • N. N. Barinov
    • 2
  1. 1.Institute of ChemistryFar East Branch of the Russian Academy of SciencesVladivostokRussian Federation
  2. 2.Far East Geological InstituteFar East Branch of the Russian Academy of SciencesVladivostokRussian Federation

Personalised recommendations